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Abstract. Population viability analysis (PVA) to forecast extinction risk is a commonly
used tool in decision- and policy-making processes of governments and conservation
organizations. A drawback to PVA is the high degree of uncertainty in these forecasts due
to both population stochasticity and parameter estimation uncertainty. With sparse or noisy
data, extinction probabilities frequently have 95% confidence intervals ranging from 0 to 1. To
make stochastic simulation results more interpretable, we present a new metric, susceptibility
to quasi-extinction (SQE), to assess whether or not a population is at risk of declining to a
prespecified level (quasi-extinction). Following standard methods for diffusion approximation
of extinction risk, we use a parametric bootstrap to determine the 95% CI for the probability
of quasi-extinction. SQE is the proportion of this parametric bootstrap that indicates a high
(defined as �0.90) probability of quasi-extinction, resulting in a point estimate that integrates
both parameter uncertainty and stochasticity in extinction forecasting. We demonstrate the
application of the metric with sea turtle nest census data, which have a high degree of year-to-
year variance and represent only a small fraction of the total population. Using population
simulations, we found that for these types of data a critical SQE value of 0.40 corresponds to
populations that have a true risk of quasi-extinction. The metric has an accuracy of .80%,
which can be increased further by lowering the 0.40 threshold and trading off Type I error
(considering a population to be ‘‘not at risk’’ when it actually is) and Type II error
(considering a population to be ‘‘at risk’’ when it actually is not), giving managers a flexible
and quantitative tool for assessments of population status.

Key words: diffusion approximation; endangered species; fisheries management; listing criterion;
population viability; PVA; quasi-extinction risk; sea turtles; susceptibility to quasi-extinction.

INTRODUCTION

Assessment of the current status and possible future

trajectories of endangered species is a critical step in the

development of conservation and management policies

(Beissinger and McCullough 2002, Morris and Doak

2002). Although each species or population requires

consideration of its unique life history characteristics

and the data that are available for assessment modeling,

there is an advantage to using a standard method for

assessment within a taxon (McClure et al. 2003).

However, the choice of an assessment tool and

appropriate modifications to it should include careful

analysis of its performance in the face of uncertainty

(Ludwig 1996, Ellner et al. 2002, Sæther and Engen

2002, Staples et al. 2005, Holmes et al. 2007). Does the

model accurately identify population status? Is it robust

under a range of uncertainty in parameters or environ-

mental stochasticity? Is it appropriately precautionary?

These questions are of critical importance to resource

managers who may need to apply a method to multiple

populations, often with poor data for model parame-

terization, and should be considered in assessment

model development.

Population viability analysis (PVA), including extinc-

tion risk estimates using simple stochastic diffusion

approximation, is a well-established body of theory

(Beissinger and McCullough 2002, Morris and Doak

2002). However, practical applications have been

hampered by the high uncertainty of the results (Ludwig

1996, Fieberg and Ellner 2000, Ellner et al. 2002, Sæther

and Engen 2002, Staples et al. 2005, Holmes et al. 2007).

Holmes et al. (2007) identify the ‘‘(0,1) criticism,’’

describing the case in which the confidence intervals

on extinction risk generated by stochastic simulation

range from 0 to 1, or are bimodal at 0 and 1, for many of

the models based on the sparse data sets available for

endangered species. Suggestions for dealing with issues

of uncertainty include the use of population prediction

intervals, which are the smallest time intervals that

include a decline to an extinction threshold (Sæther and

Engen 2002), risk-based population monitoring that

uses short time frames and quasi-extinction thresholds

close to current population size (Staples et al. 2005), and

the use of Bayesian decision theory to consider all

possible parameter combinations not possible with
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frequentist approaches (Ludwig 1996). The determina-

tion of how to identify and communicate levels of risk is
an ongoing problem for conservation biology and has

limited the applicability of population viability manage-
ment to status determinations of threatened and

endangered species (Holmes et al. 2007).
Here we present a novel method for the application of

diffusion approximation to risk assessment and status
determination that circumvents the problem of large
confidence intervals, which can arise with highly

uncertain or variable abundance estimates. We use a
bootstrapping approach to derive a single metric, the

susceptibility to quasi-extinction (SQE), to assess if the
probability of a population’s risk of quasi-extinction is

high enough to warrant a particular status listing. The
metric incorporates the two types of uncertainty: error

introduced by parameter estimation by diffusion ap-
proximation and the uncertainty due to the stochastic

nature of a population’s future trajectories. We use sea
turtles as an example of the application of the method;

however, it can be readily applied to any species for
which census data are available. We use population

simulations to validate the method and to determine a
critical value for the metric, above which a population is

likely to be at risk. This quantitative method to set
thresholds for evaluation of a population’s status should
be useful for managers because it is straightforward to

implement and fits well within the language of listing
criteria for endangered species (IUCN 2001).

The objectives of our study were (1) to develop a new
metric for quantifying quasi-extinction risk (SQE) that is

based on the well-known diffusion approximation
methods, but that incorporates multiple sources of

uncertainty not traditionally parsed by diffusion meth-
ods; and (2) to implement this metric for endangered sea

turtles to illustrate its application to long-lived verte-
brates with high uncertainty in adult abundance

estimates.

METHODS

Case study: sea turtles

Sea turtles present unique problems for population
assessment (Heppell et al. 2002). Six of the seven species

of sea turtles worldwide are listed as either threatened or
endangered by both the U.S. Endangered Species Act

and the World Conservation Union (IUCN) Red List
(IUCN 2001). These species continue to be taken as

bycatch in many fisheries (NMFS 2001, Lewison et al.
2004) and are also actively harvested in many regions of

the world (Koch et al. 2006). The life cycles of many
populations include trans-oceanic migrations, thus

requiring coordinated, multinational conservation ef-
forts to protect and manage these populations (Heppell

et al. 2002). The available data for many of these
populations include only beach counts of nests or

nesting females, which is a small and variable fraction
of the whole population. These census data can be

considered highly corrupt due to the high year-to-year

variation in numbers of nesting females, numerous

sources of observation error, and the fact that adult

females represent only a small fraction of the population

(,2%; Crowder et al. 1994, Lewison et al. 2004). Hence,

there is a need for a metric that can accurately determine

risk for populations with these types of data. Diffusion

approximation techniques that explicitly account for

data uncertainty can serve as an assessment tool for sea

turtles and hold promise for application to listing

decision reviews, recovery planning, and fisheries

management.

In their criteria for listing a species as critically

endangered, endangered, or ‘‘of concern,’’ the IUCN

calls for observed, estimated, inferred, or suspected

population size reductions of 90%, 70%, or 50%,

respectively, over the last 10 years or three generations,

whichever is longer, up to a maximum of 100 years

(IUCN 2001). Because some sea turtles do not reach

sexual maturity for as much as 40 years, depending on

species and population (Balazs and Chaloupka 2004),

three generations can be quite long: time series of 35–100

years need to be considered and good historical

abundance records do not generally exist over such time

periods. Diffusion approximation models for population

viability fall nicely into the language of the IUCN listing

criteria (Holmes et al. 2007). However, before there can

be practical applications of the models, methods for

dealing with uncertainty in risk assessments must be

clearly defined.

In using diffusion approximation for extinction risk

estimates, Holmes (2001) advocates the use of running

sums to reduce some the variability in parameter

estimation to improve performance of the model as a

method of producing a more meaningful estimation of

population size, which is critical to setting appropriate

quasi-extinction thresholds (Holmes 2004). Here we

estimate changes in the total numbers of adult females in

a population of marine turtles over a given time period,

based on annual observations of nests or nesting

females. Because most sea turtles do not reproduce

annually, we use what we know about remigration

intervals to establish reasonable running sum lengths.

Breeding remigration intervals for adult female sea

turtles vary among individuals and populations, prob-

ably depending on age and environmental conditions

(Broderick et al. 2001, Rivalan et al. 2005, Saba et al.

2007). We have imperfect information on remigration

intervals for most populations because these estimates

are confounded by imperfect site fidelity of females and

by mortality; most studies do not account for these

effects. Despite these limitations, some generalizations

can be made. One-year remigration intervals are rare,

but two- and three-year intervals are much more

common, usually followed by four-year intervals (Rich-

ardson et al. 1978, Van Buskirk and Crowder 1994,

Hughes 1996, Reina et al. 2002, Hatase et al. 2004,

Rivalan et al. 2005). Hence, we used running sums of

two, three, or four years to span a likely range for most
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sea turtles. Information on remigration intervals and

how they vary among years and individuals is lacking

for most nesting populations. We explore the conse-

quences of using a running sum of two, three, or four

years for simulated populations with underlying mean

remigration intervals that range from two to four vs. a

running sum that is consistent with the actual remigra-

tion interval characteristic of the population.

Diffusion approximation

We use diffusion approximation methods to estimate

quasi-extinction risks (Dennis et al. 1991, Holmes 2001,

Holmes and Fagan 2002, Morris and Doak 2002). This

method uses time series of abundances to estimate mean

population growth rate (l) and the variance of this rate

(r2). These parameters are estimated using simple linear

regression (Dennis et al. 1991) and can be used to

estimate PVA risk metrics, including mean time to

extinction and probabilities of declining to a preset

threshold (quasi-extinction). We present the details of

our application of the equations in conjunction with a

running sum in Appendix A.

Dealing with uncertainty in extinction estimates:

defining ‘‘susceptibility to quasi-extinction’’

The probability density function for hitting a quasi-

extinction threshold, QET, is described by the inverse

Gaussian distribution (Morris and Doak 2002):

gðtjl;r2; dÞ ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pr2t3
p exp

�ðd þ ltÞ2

2r2t

" #

ð1Þ

where d¼ log(n0/QET) and n0 is the current population

size based on the running-sum transform of the data.

For l and r2 in Eq. 1, we used the parameter estimates l̂

and r̂2 and r̂2
p. The variance estimate r̂2 is the total

variance and it includes both observation and process

error. The estimate r̂2
p removes observation error and

includes only process error (Holmes and Fagan 2002).

To calculate the total probability of reaching an

extinction threshold at any time T, Eq. 1 is integrated

from t¼ 0 to t¼T, resulting in the following cumulative

distribution function:
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where U(z) is the standard normal cumulative distribu-

tion function. We used the parametric bootstrap

estimation procedure from Morris and Doak (2002) to

compute a range of quasi-extinction estimates by

sampling from the estimated distribution of l̂ land r̂2

or r̂2
p. We determined if the quasi-extinction threshold

value was reached over a time period of T¼3 generations

or 100 years, whichever value is smaller, which is

consistent with the IUCN listing criteria (IUCN 2001).

Morris and Doak (2002) use the parametric bootstrap

method to estimate 95% CI around quasi-extinction

risks; however, a major drawback for this analysis is that

for populations with growth rates that are close to zero

(stable) or with high interannual variance, the estimated

95% CI for extinction probability often ranges from 0 to

1 when large values of T are used (Ludwig 1999, Feiberg

and Ellner 2000). This is not informative for manage-

ment purposes, yet there are ongoing needs for listing

criteria that require the best available scientific input.

We suggest a metric other than the mean and confidence

intervals for extinction risks as a measure of the

likelihood of quasi-extinction of the population. Instead,

we calculate the proportion of replicates from the

parametric bootstrap procedure that indicate a high

(.0.90) probability of quasi-extinction.

We demonstrate the application of this metric with

two simulated populations (methodology for population

simulations will be described) with the same value of l̂¼
�0.003 but different levels of variance around l̂: 95% CI

of l̂ for population A¼ (�0.254, 0.250) and for

population B ¼ (�0.115, 0.188); see Fig. 1. The

parametric bootstrap for both of these populations

estimated a 95% CI of 0 to 1 for quasi-extinction risk

in three generations. These results are common to quasi-

extinction risk estimates using diffusion approximation

(Ludwig 1996, Fieberg and Ellner 2000, Ellner et al.

2002, Holmes et al. 2007). For population A, with the

higher level of variance, 33.3% of the bootstrap replicates

indicate a �0.90 probability of quasi-extinction, whereas

population B, with lower variance, shows only 15.5% of

replicates meeting this criterion, suggesting that popula-

tion A is at somewhat greater risk of quasi-extinction

than population B. We use the phrase ‘‘susceptibility to

FIG. 1. Histogram of the results of the parametric bootstrap
(N ¼ 1000) for estimating quasi-extinction risk using the
diffusion approximation method where estimated mean popu-
lation growth rate, l̂, and its variation, r̂2, were estimated as in
Dennis et al. (1991). Shown are the results for two simulated
populations with the same mean values of l̂ but different levels
of variance, as indicated by the 95% confidence limits in square
brackets. Population A is indicated by the black bars,
population B by the gray bars. Susceptibility to quasi-extinction
(SQE) is the proportion of the replicates from the bootstrap
procedure that indicated a .0.90 probability of quasi-
extinction.
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quasi-extinction’’ (SQE) to describe this metric. Our

choice of �0.90 to quantify the idea of ‘‘high probability

of quasi-extinction’’ was arbitrary and different values

could certainly be used. With the validation method

described below, the results would be qualitatively the

same regardless of the selection of this value. We explore

the usefulness and accuracy of SQE as a means of

comparing relative risks in populations (Morris and

Doak 2002). For this metric to be useful, we need to

establish a critical value above which SQE would be

considered cause for concern, and below which it would

not. We use population simulations both to establish the

critical value and to test its accuracy.

Population simulations

Defining the critical value.—We established the critical

value of the susceptibility to quasi-extinction (SQE)

index by generating time series of nesting female

abundances using stochastic population simulations

(Appendix B; Fig. 2). We generated 500 ‘‘populations’’

and projected them for 30 years. The resulting time

series of observed nesting females were used to compute

l̂ and r̂2 or r̂2
p values by applying both the Dennis et al.

(1991) and Holmes (2001) techniques. The SQE values

were determined for each population at quasi-extinction

thresholds of 50%, 70%, and 90% reductions from

current population size. For the time horizon (T in Eq.

2) of the quasi-extinction risk, we followed the criteria

guidelines provided by IUCN of three generations up to

100 years. The IUCN defines generation time as age at

maturity plus one-half of reproductive longevity and it

was calculated as aþ log(0.5)/log(SA), where a is age at

maturity and SA is mean adult survival.

To determine the ‘‘actual’’ extinction risk, each

population was projected from the end of the 30-year

time series for T years. The starting population size for

each of these simulations was based on the number of

adult females at the end of the 30-year time series, and

we ran the model 1000 times for each population to

assess quasi-extinction risk. We used quasi-extinction

threshold (QET) values of 50%, 70%, and 90%

reductions of starting population sizes and considered

the proportion of the 1000 simulations that the

populations fell below QET as the ‘‘actual’’ quasi-

extinction risk.

There are two types of error that can be made in

classifying populations as at risk or not at risk of quasi-

extinction: (1) that a population is considered to be not

at risk when in fact it is, and (2) that a population is

considered at risk when in fact it is not. We refer to the

first as a Type I error and the second as a Type II error.

We compared the ‘‘actual’’ quasi-extinction risk with the

SQE metric for these 500 populations to find the critical

value for SQE that minimized both types of errors. If the

‘‘actual’’ extinction risk analysis indicated that .50% of

the 1000 simulations crossed the QET, the population

was considered at risk; otherwise it was considered not

at risk. At each critical value, if the SQE for a

population was greater than the critical value, it was

considered at risk, otherwise not at risk. Spearman rank

correlations (rS) were calculated between actual extinc-

tion risk and diffusion approximation parameters and

SQE (Zar [1999]; cor.test command in S-PLUS version

6.2; Insightful Corporation 2003).

Testing the critical value.—We then created an

additional 300 simulated ‘‘populations’’ to test the

accuracy of the critical value (Fig. 2) for different time

series lengths and for different running-sum lengths. To

test different time series lengths, we created a set of

assessment ‘‘windows’’ for each of these populations by

projecting them for time series of 15, 20, 25, and 30 years

with new demographic parameters drawn from the set

mean and variance of each parameter for that popula-

tion at each time step from distributions centered at the

mean (Appendix B: Table B1). This produced 1200

simulated time series (300 populations at four time series

lengths). ‘‘Actual’’ quasi-extinction risks were estab-

lished for each population at each time series length as

described previously. We compare these ‘‘actual’’ results

with those estimated from diffusion approximation

using the same time series and the methods of both

Dennis et al. (1991) and Holmes (2001).

To explore how (1) the choice of running-sum length

influences the accuracy of the diffusion approximation

analysis, and (2) whether or not the results are more

accurate if a running sum that approximates actual

remigration intervals is used, we divided the 300

simulated populations into three groups representing

different mean remigration intervals of 2, 3, and 4 years.

We delineated the groups with half-year intervals

around the mean, such that remigration intervals

between 1.5 and 2.49 would be considered in the 2-year

group, and so forth. We applied 2-, 3-, and 4-year

running sums to the time series of observed nesting adult

females for each population in each of these three

groups. For each of these different running sums, the

current population size, n0, changes, because this value is

based on the running sum of the transformed data. We

expect a running sum that is reflective of the remigration

interval to result in higher accuracy than one that is not,

as this would more closely approximate true numbers of

adult females in the population.

RESULTS

We applied both the Dennis et al. (1991) and the

Holmes (2001) method to compute l̂ and r̂2 or r̂2
p for

800 simulated populations (Fig. 2), with sampling error

incorporated as variance in the proportion of nesting

females observed. A linear regression between estimates

of process error (stochasticity), r̂2
p, for the Holmes

(2001) method and the total error, r̂2, for the Dennis

method resulted in a slope of 0.23, indicating that r̂2
p

was generally lower than r̂2 for the same population

after time series length ¼ 30 years (all 800 populations;

Fig. 3). However, the confidence intervals of the estimate

of r̂2
p for the Holmes (2001) method were wider than the

April 2009 777RISK ASSESSMENT OF SEA TURTLES



estimate of r̂2 using the Dennis et al. (1991) method

(from the 300 ‘‘populations’’ at different time series

lengths; Fig. 4).

Susceptibility to quasi-extinction (SQE) is the pro-

portion of the parametric bootstrap replicates that

indicate a .90% chance of dropping below a predefined

quasi-extinction threshold (QET). A linear regression of

SQE resulting from the methods of calculating r̂2

(Dennis et al. 1991) or r̂2
p (Holmes and Fagan 2002)

resulted in a slope of 1.10, suggesting that the values

were similar (time series length ¼ 30 years; all 800

populations; QET ¼ 50%; R2 ¼ 0.83; P , 0.05). SQE

FIG. 2. Flow chart outlining the steps we followed to test and apply the susceptibility to quasi-extinction (SQE) metric. SQE is
the proportion of replicates from the diffusion approximation that indicates a .90% chance of dropping below a predefined quasi-
extinction threshold (QET). Italicized text indicates how the technique would be applied generally; additional text details the
methods that we used for sea turtles. Values of QET¼50%, 70%, and 90% reductions in population size at the end of the time series
were used. Type I error indicates finding a population to be at risk of quasi-extinction when it is not, whereas Type II error indicates
finding a population to not be at risk of quasi-extinction when it is.
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incorporates both parameter uncertainty (variance of
the estimate of r̂2) and trajectory uncertainty (r̂2). The
Holmes method, based on a state–space model that

decomposes the variance sources, gives less biased
estimates of the true environmental variance, but at
the cost of variance in the estimate of r̂2

p. SQE combines

these two variance costs, resulting in a high correlation
between the SQE results of both methods.
The ‘‘actual’’ quasi-extinction risks resulting from the

500 simulated populations were highly correlated with
the SQE value generated from diffusion approximation

on the 30-year time series (Table 1). Approximately 95%

of the actual quasi-extinction risks for the 500 model
populations were either above 0.90 or below 0.10,

allowing us to easily classify most populations’ ‘‘actual
risk.’’ For the remaining 5% of the quasi-extinction risks,
as noted in Methods, if the result indicated that .50% of

the 1000 simulations for each model crossed the QET, it
was considered at risk, and otherwise, not at risk.
Susceptibility to quasi-extinction (SQE) is based on

parametric bootstrapping and must be assessed with a
critical threshold probability value. In other words, the
evaluation of risk to a population based on its current

trajectory and variance requires a critical value for the
proportion of replicates that have a high (.90%)

probability of dropping below a QET. If this critical
value is too high, there is a chance of Type I error, in
which a population would be listed as ‘‘not at risk’’ when

it actually has a high chance of dropping below a QET.
On the other hand, if the critical value is set too low,
there is a chance of Type II error, in which a population

is assessed at a higher level of risk than it actually faces.
To establish the critical value for SQE, we found the
value that minimizes both Type I and Type II errors

(Fig. 5). At each critical value, if the SQE for a
population was greater than the critical value, it was
assigned a value of ‘‘at risk’’; otherwise, ‘‘not at risk.’’

We found that a critical value between 0.35 and 0.45 was
satisfactory for both methods and the three running
sums (Figs. 5 and 6). This means that a species should be

listed as ‘‘at risk’’ if 35–45% of bootstrapped replicates

indicate a .90% probability of dropping below a

predetermined QET. Based on our simulations, SQE

with critical values correctly assessed quasi-extinction

risk between 82% and 92% of the time (Fig. 7). Type I

errors were less common than Type II errors and

occurred with a frequency generally less than 10%.

Decreasing the critical value for SQE could reduce the

probability of underestimating risk if one is willing to

increase the risk of Type II errors (Fig. 6).

Although confidence intervals for r̂2 decline with

increasing times series lengths (Fig. 4), above 15 years,

the length of the time series did not have a large impact

on the accuracy of the diffusion approximation (Fig. 7).

This result would suggest that SQE is robust to estimates

of r̂2. For the 15-year time series, quasi-extinction risk

was correctly assigned more than 80% of the time.

Although this level of accuracy was generally lower than

it was for the longer time intervals, it would still be

possible to apply these techniques to the shorter time

intervals. Generally, a 4-year running sum resulted in

higher accuracies than a 2-year running sum, with 3-yr

being intermediate, consistent with the declining 95% CI

for l̂ and r̂2 with increasing time series lengths,

although this trend was not always the case (Fig. 7).

Accuracies were generally highest for QET ¼ 50%

reduction of current population size and declined from

there for reductions of 70% and 90%. Contrary to our

expectations, choice of running-sum length had little

influence on the accuracy of diffusion approximation

results (Fig. 8). The two diffusion approximation

methods used here and the different running-sum

lengths affected the estimates of r̂2, and SQE was

relatively insensitive to these estimates (Table 1). Hence

these results, the similarity of SQE for the two diffusion

approximation methods, and the insensitivity of SQE to

running-sum length, are not surprising.

FIG. 3. Comparison of the mean value of r̂2 from the
Dennis et al. (1991) method vs. the process error, r̂2

p, from the
Holmes (2001) method for 500 simulated time series of observed
nesting females. The solid line is a linear regression (slope ¼
0.23, R2¼ 0.44, P , 0.05).

FIG. 4. The mean width of the 95% confidence intervals for
parameters l̂ and r̂2 shown as a function of the length of the
time series of simulated sea turtle nesting-beach data. The
dashed line represents r̂2

p (process error) for the Holmes (2001)
method; the solid line represents r̂2 for the Dennis et al. (1991)
method; the dashed line with open triangles represents l̂ for the
Holmes method; and the solid line with squares represents l̂ for
the Dennis method.
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APPLICATION OF THE METHOD

Estimates of extinction risk, as with any predictive

models, are by nature uncertain. Extinction risk

estimates are well-known to have very high uncertainty,

because population dynamics are stochastic and because

parameter estimates are uncertain (Holmes et al. 2007).

The susceptibility to quasi-extinction (SQE) metric

integrates both forms of uncertainty and allows scien-

tists involved in listing decisions to formally balance the

risk of Type I and Type II errors in management

decisions. Under the IUCN listing criteria, when a

population declines to 50% of the current population

size over a three-generation time period, the population

is given a listing of ‘‘concern’’; a 70% reduction qualifies

as ‘‘endangered’’ and a 90% reduction qualifies as

‘‘critically endangered,’’ with some modification to these

thresholds when mortality or habitat loss has not been

addressed through conservation actions.

The methodology that we propose for marine turtles

can be readily applied to nesting-beach data to ascertain

listing status. Current population size should be

estimated as the sum of the x most recent years, where

x is the length of the running sum (i.e., 2, 3, or 4 years).

Quasi-extinction values equal to 50%, 70%, and 90% of

the estimated current population sizes can then be

considered and SQE can be calculated using the

methods presented here. Some assumptions regarding

the time period being equal to three generations will

need to be made, as there are imperfect data on age at

maturity for most populations. If SQE is greater than

0.40, using diffusion approximation where l̂ and r̂2 are

estimated as in Dennis et al. (1991) and a 3-year running

sum, for any of the QET values, the nesting population

would receive the most conservative listing. Based on

our simulations, this results in a rate of Type I error of

;10%. Use of a lower critical value, 0.35 or 0.30, would

lower this risk of Type I error but would result in much

higher rates of Type II errors.

We demonstrate this method using three published

data sets of leatherback nesting trends (Fig. 9): Parque

Nacional Marine Las Baulas, Costa Rica (Tomillo et al.

[2007]; data from 1988/1989–2003/2004; N ¼ 16 years),

St. Croix, U.S. Virgin Islands (Dutton et al. [2005]; data

TABLE 1. Spearman rank coefficients (rS) for various parameters and ‘‘actual’’ quasi-extinction
risk as defined in Methods: Population simulations.

Parameter

rS at ‘‘actual’’ quasi-extinction risk level

QET ¼ 50% QET ¼ 70% QET ¼ 90%

Current population size �0.790** �0.776** �0.694**
Estimated mean population growth rate, l̂ �0.854** �0.837** �0.755**
Estimated variance of population growth rate, r̂2 0.289** 0.266** 0.218**
SQE 0.863** 0.851** 0.777**

Notes: For susceptibility to quasi-extinction (SQE), the correlation coefficients represent the
correlations at the same quasi-extinction threshold (QET) as the ‘‘actual’’ value: 50%, 70%, or 90%
reductions from current population size (e.g., the correlation between the ‘‘actual’’ quasi-extinction
risk at QET ¼ 50% based on stochastic population simulations, and the SQE at QET ¼ 50% is
0.863).

** Values are significant at P , 0.005.

FIG. 5. The occurrence of both Type I error (failing to give
an ‘‘at risk’’ assessment when a population is likely to drop
below QET) and Type II error (giving an ‘‘at risk’’ assessment
when a population is not likely to drop below QET) for
simulated population assessments based on susceptibility to
quasi-extinction (SQE). The top panel shows the results for the
Dennis et al. (1991) method; the bottom panel shows results for
the Holmes (2001) method. In both panels, heavy solid black
lines represent the mean of the Type I error for all values of
quasi-extinction thresholds (QET); lighter solid lines with
different symbols show Type I error for QET ¼ 50%, 70%,
and 90%. The heavy dashed line is the mean of the Type II error
for all values of QET; lighter dashed lines with different
symbols show Type II error for QET ¼ 50%, 70%, and 90%.
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from 1982–2001; N ¼ 20 years), and KwaZulu-Natal,

South Africa (Hughes [1996]; data from 1963–1994; N¼
32 years). We used the mean value of age to sexual

maturity of 14 years (Zug and Parham 1996), a 3-year

running sum, and an adult survival rate of 0.90 to

estimate a generation time of 21 years or a three-

generation time period equal to 63 years. The SQEs for

each of these populations were estimated using the

diffusion approximation method, where the l̂ and r̂2

values were estimated as in Dennis et al. (1991).

Given the approach just outlined, the Costa Rica

nesting beach, with l̂ ¼ 0.185, r̂2 ¼ 0.055, and SQE .

0.95 at all quasi-extinction threshold values, would be

listed as critically endangered (Table 2). The other two

nesting beaches had SQE ¼ 0 and would receive no

listing (Table 2).

DISCUSSION

We present a new metric, the susceptibility to quasi-

extinction (SQE), which is the proportion of a paramet-

ric bootstrap that indicates a high (defined as .90%)

probability of quasi-extinction. Population simulations

determined that SQE � 0.40 (when �40% of the

bootstrap samples indicated a probability of quasi-

extinction �0.90) corresponded to populations that are

at high risk of quasi-extinction. This approach yields

more meaningful results than point estimates with large

(often 0 to 1) confidence intervals that are typical of

extinction risks. Instead, SQE considers the weight of

the evidence by assessing the distribution of the quasi-

extinction probabilities in the bootstrapped data and

classifies populations as at risk or not at risk. Through

population simulations we show that the classification is

accurate more than 80% of the time for sea turtle nest

census data, and that this rate of accuracy is easily

increased by trading off Type I and Type II errors.

Because nest census data for sea turtles can be

considered highly corrupt due to the high interannual

variation caused by remigration intervals, numerous

sources of observation error, and the fact that adult

females represent a very small fraction of the total

population (,2%; Crowder et al. 1994, Lewison et al.

2004), the accuracy of SQE in classifying risk in these

populations suggests that this method can be useful for a

variety of species and life histories. In terms of its ability

to accurately assign quasi-extinction risk, SQE estimated

using the diffusion approximation method where the l̂
and r̂2 or r̂2

p values were estimated as in the Dennis et

al. (1991) or Holmes (2001) diffusion approximation

models performed equally well for sea turtle nest census

data and the time periods considered here. Because they

are computationally simpler, the Dennis et al. (1991)

methods for estimating trend and variance may be more

tractable for management purposes. However, because

FIG. 6. Illustration of the method used to determine a critical susceptibility to quasi-extinction (SQE) value for evaluation of
risk to sea turtle nesting-beach data. The plot compares the ‘‘actual’’ quasi-extinction risk evaluated by stochastic population
simulations with the SQE risk metric for 500 simulated populations using l̂ and r̂2 from the Dennis et al. (1991) method and a
quasi-extinction threshold (QET) of 50% of the starting population size. For ‘‘actual’’ quasi-extinction risk, the population was
considered at risk if .50% of the simulations crossed the QET (vertical solid line). Shown here are the results of considering 0.40 as
the critical value for SQE (horizontal solid line); see Results for details. In this example, extinction risk was correctly assigned as
either risk or no risk for 84.6% of the populations.
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the variance estimates for the Dennis et al. (1991)

method are biased, these estimates will not improve with

increased data collection. The less biased variance

estimates of Holmes (2001) will improve with increased

time series lengths. Hence, for other species with more

complete census counts (i.e., counts that include

multiple life stages and individuals that have equal

interannual resighting probabilities) and longer time

series of data, the Holmes (2001) method is likely to

perform better than the Dennis et al. (1991) method.

Longer time series are always desirable. Accuracy for

the correct classification of a population (high vs. low

risk of quasi-extinction) based on SQE increased for

time series greater than 20 years, although SQE for

the15-year time series still correctly assigned risk vs. no

risk more than 80% of the time. We found the highest

degree of accuracy with 3- and 4-year running sums,

even when actual remigration interval was ;2 years.

This is probably because increasing running-sum length

decreases interannual variability and, hence, the vari-

ance around l̂.
The language of the IUCN listing criteria poses the

question that if current conditions continue, what is the

likelihood of a population reaching a quasi-extinction

threshold? As indicated in Appendix B, we incorporated

a large amount of stochasticity into the population

models; however, they are all driven by the exponential

growth model in which population growth is density

independent and the mean value of the demographic

parameters remained the same through the entire time

period, making the inherent assumption that current

conditions remain the same. The SQE, in combination

with the critical value above which the population is

considered at risk, resulted in quasi-extinction risk

assessments that were in close agreement with the

FIG. 7. The proportion of the 300 simulated populations
with quasi-extinction risk correctly assigned for the three
different running sums following Dennis et al. (1991) for
calculations of l̂ and r̂2. Black bars represent a 2-yr running
sum (critical value ¼ 0.45), open bars represent a 3-yr running
sum (critical value ¼ 4.0), and gray bars represent a 4-yr
running sum (critical value ¼ 0.375). The three panels show
values of quasi-extinction thresholds (QET) of (a) 50%, (b)
70%, and (c) 90% of current population size.

FIG. 8. Comparison of results of using a running sum
descriptive of that known for the population vs. using a general
running sum. Shown here are results using the Dennis et al.
(1991) method of calculating diffusion approximation param-
eters. The x-axis is the true mean remigration interval for the
populations, 60.5. Three different running sums were then
applied to each set of populations. Black bars represent a 2-yr
running sum (critical value ¼ 0.45), open bars represent a 3-yr
running sum (critical value¼ 4.0), and gray bars represent a 4-
yr running sum (critical value¼ 0.375). The three panels show
values of quasi-extinction thresholds (QET) of (a) 50%, (b)
70%, and (c) 90% of current population size.
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‘‘actual’’ risk determined by the stochastic population

models. Hence, although SQE may not be predictive, as

current conditions are not likely to continue, it is a

useful and accurate metric for categorizing populations

consistent with IUCN listing criteria.

We did not explore the effects of density dependence

in our simulations. For sea turtles, density-dependent

impacts on vital rates have been noted only rarely

(Bjorndal et al. 2000, Chaloupka 2001), and many

populations are depleted in comparison to historic levels

(Jackson et al. 2001). Hence, it is unlikely that density-

dependent processes are important factors in most sea

turtle populations today. In addition, the simple
stochastic exponential growth model has been demon-

strated in other simulation studies to adequately

approximate complex population processes (Sabo et al.

2004, Staples et al. 2005, Holmes et al. 2007). Sabo et al.

(2004) found that diffusion approximation using densi-
ty-independent models of population growth gave

reasonably appropriate assessments of extinction risk

for populations with density-dependent processes. It is

therefore likely that our methods could be successfully

applied to species for which density-dependent processes

are important considerations, but additional simulation
analysis is warranted if density-dependent compensation

or depensation is likely to have a strong effect on

population growth rate.

Comparison of SQE with other methods

for estimating uncertainty in risk estimation

Other studies have acknowledged the difficulties of

dealing with uncertainty in the application of population

viability analysis to management decisions. Ludwig

(1996) compared Bayesian and frequentist approaches

to demonstrate that the point estimates from frequentist

statistics do not consider the uncertainty in population
parameters and processes and, hence, tend to underes-

timate risk of extinction. He proposed that the Bayesian

method highlights risks of early collapse that are rare,

but plausible, in light of the data that frequentist

approaches cannot consider. Although we used a

frequentist approach, this bias in underestimating
extinction risk was circumvented by considering only

the fraction of the bootstrapped risk estimates that had a

high value and then ground-truthing the methodology

with population simulations and establishing a critical

value. Because the critical value minimized Type I and

Type II errors, there is no bias in the direction of the
uncertainty incorporated in our method.

Sæther and Engen (2002) suggest the use of popula-

tion prediction intervals (PPI), which are the smallest

time intervals that include a decline to a quasi-extinction

threshold, as a means of bypassing the uncertainties

FIG. 9. Leatherback turtle nesting data for three leather-
back nesting beaches in (a) Parque Nacional Marino Las
Baulas, Costa Rica (Tomillo et al. 2007; data from 1988/1989–
2003/2004, N ¼ 16 years); (b) St. Croix, U.S. Virgin Islands
(Dutton et al. 2005; data from 1982–2001,N¼20 years); and (c)
KwaZulu-Natal, South Africa (Hughes 1996; data from 1963–
1994, N ¼ 32 years).

TABLE 2. Susceptibility to quasi-extinction values calculated for three leatherback turtle nesting beaches.

Nesting beach n0 l̂ r̂2

QET

50% 70% 90%

Costa Rica 335 �0.185 [�0.326, �0.0439] 0.055 [0.029, 0.141] 1.000 1.000 0.978
U.S. Virgin Islands 390 0.104 [0.016, 0.191] 0.029 [0.016, 0.175] 0.000 0.000 0.000
South Africa 297 0.056 [�0.003, 0.116] 0.025 [0.016, 0.045] 0.000 0.000 0.000

Notes: The nesting beaches are in Parque Nacional Marino Las Baulas, Costa Rica (Tomillo et al. 2007; data from
1988/1989�2003/2004, N¼ 16 years); St. Croix, U.S. Virgin Islands (Dutton et al. 2005; data from 1982�2001, N¼ 20 years); and
KwaZulu-Natal, South Africa (Hughes 1996; data from 1963�1994, N ¼ 32 years). Values at three quasi-extinction thresholds
(QET) of 50%, 70%, and 90% reductions from current population size (n0), as estimated from the sum of number of nesting females
for the last three years of the time series are reported. Estimates of mean population growth rate l̂ and its variance r̂2 are given with
the 95% confidence limits in brackets.
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inherent in longer time frames. They propose that the

important metric in the face of uncertain population

parameters is time to extinction, rather than the

probability of extinction occurring. Holmes et al.

(2007) found that PPIs can complement quasi-extinction

risk estimates with wide confidence intervals. Similar to

SQE, PPIs incorporate uncertainty both from stochas-

ticity and from parameter uncertainty to draw inference

about an unobserved stochastic variable. In this case,

rather than risk of extinction, the variable is time to

extinction. The drawback to PPIs is that they only

realistically apply to declining populations, which is

typical of populations for which population viability

assessments are made. However, many protected pop-

ulations are increasing and it is useful to have a metric

that can place the status of these populations into the

same context as declining population, such as with SQE.

Similar to the approach of Sæther and Engen (2002),

Staples et al. (2005) recommends the use of shorter time

frames, plus quasi-extinction thresholds that are close to

current population size, which minimizes uncertainty in

risk assessments. They suggest monitoring how risk

changes over time, because this warns of future declines

more readily and rapidly than any statistical tests for

trends. The approach of Staples et al. (2005) in

conjunction with the SQE metric proposed here may

be a useful tool in monitoring populations over time.

Increases or declines in SQE detected from the

incorporation of new data over time may highlight

recoveries or collapses much earlier than would tradi-

tional trend analyses.

Our approach to uncertainty is unique, although it

can complement other approaches. There is a need in

conservation biology decision making for formal deci-

sion theory frameworks for extinction risk assessment

whereby managers weigh the potential costs of making

an incorrect decision (Holmes et al. 2007). Although the

SQE metric is a point estimate that does not explicitly

state confidence intervals, error and uncertainty are still

inherent in it, shown as the possibility of making Type I

or Type II errors. Through simulations, these errors can

be quantified. The SQE metric allows managers to

formally balance the trade-offs between the risk of

making a Type I error (leading to species decline or

extinction) against the cost of making a Type II error

(unnecessarily curtailing human activities that may

affect a population).

Based on our simulation studies with age-structured

exponential growth models, diffusion approximation

and the SQE metric is a promising assessment tool that

can be applied to sea turtle nest count data and, with

additional validation, expanded to other species. The

SQE metric provides a quantitative method to index

current population status and allows for comparisons

between populations. With the modifications presented,

it can provide results that are meaningful and easily

interpreted for management decisions.
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APPENDIX A

Details of the diffusion approximation method (Ecological Archives A019-032-A1).

APPENDIX B

Population simulations (Ecological Archives A019-032-A2).
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