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ABSTRACT 
 
 

Genetic Analysis of the Kemp�s Ridley Sea Turtle (Lepidochelys kempii)  
 

with Estimates of Effective Population Size.  (August 2003) 
 

Sarah Holland Stephens, B.S., University of Florida 
 

Chair of Advisory Committee:  Dr. Jaime Alvarado Bremer 
 
 

 The critically endangered Kemp�s ridley sea turtle experienced a dramatic 

decline in population size (demographic bottleneck) between 1947 and 1987 from 

160,000 mature individuals to less than 5000.  Demographic bottlenecks can cause 

genetic bottlenecks where significant losses of genetic diversity occur through genetic 

drift.  The loss of genetic diversity can lower fitness through the random loss of adaptive 

alleles and through an increase in the expression of deleterious alleles. 

 Molecular genetic studies on endangered species require collecting tissue using 

non-invasive or minimally invasive techniques.  Such sampling techniques are well 

developed for birds and mammals, but not for sea turtles.  The first objective was to 

explore the relative success of several minimally invasive tissue-sampling methods as 

source of DNA from Kemp�s ridley sea turtles.  Tissue sampling techniques included; 

blood, cheek swabs, cloacal swabs, carapace scrapings, and a minimally invasive tissue 

biopsy of the hind flipper.  Single copy nuclear DNA loci were PCR amplified with 

turtle-specific primers.  Blood tissue provided the best DNA extractions.  Additionally, 

archival plasma samples are shown to be good sources of DNA.  However, when dealing 
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with hatchlings or very small individuals in field situations, the tissue biopsy of the hind 

flipper is the preferred method. 

 This study�s main focus was to evaluate whether the Kemp�s ridley sea turtle 

sustained a measurable loss of genetic variation resulting from the demographic 

bottleneck.  To achieve this goal, three alternative approaches were used to detect a 

reduction in Kemp�s ridley�s effective population size (Ne) from microsatellite data.  

These approaches were 1) Temporal change in allele frequencies, 2) An excess of 

heterozygotes in progeny, and 3) A mean ratio (M) of the number of alleles (k) to the 

range of allele size (r).  DNA samples were obtained from Kemp�s ridleys caught in the 

wild.  PCR was used to amplify eight microsatellite loci and allele frequencies were 

determined.  Data from only four microsatellites could be used.  Although the reduced 

number of loci was a limiting factor in this study, the results of all three approaches 

suggest that Kemp�s ridley sustained a measurable loss of genetic variation due to the 

demographic bottleneck. 
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INTRODUCTION 

The Kemp�s ridley sea turtle (Lepidochelys  kempii, Garman 1880) a member of 

the family Cheloniidae, is ranked among the smallest of all seven sea turtle species with 

an average carapace length of 69 cm (Bjorndal 1995).  The Kemp�s ridley was 

considered by some authors to be a subspecies of the olive ridley sea turtle 

(Lepidochelys olivacea).  However, mitochondrial DNA (mtDNA) data validated its 

distinct status from the olive ridley (Bowen et al. 1991).  Its range includes the Gulf of 

Mexico and the U.S. Atlantic coast north to Long Island Sound (Morreale et al. 1992) 

but also extends to other areas of the Atlantic Ocean.  This species prefers shallow sandy 

and muddy habitats and is usually observed near to shore.  Kemp�s ridley is carnivorous, 

feeding on crabs, shrimps, clams and sea urchins.  This species has been shown to attain 

sexual maturity at approximately 10 years of age (Coyne 2000).  Sexing of sea turtles is 

done primarily via measurements of sex steroid levels in the tissue (Duronslet et al. 

1989).  Courtship and mating areas for the Kemp�s ridley are not well known.  

Occasional observations during the breeding season have revealed that both males and 

females are very aggressive during this time (Bjorndal 1995).  Kemp�s ridleys nest in 

arribadas (Spanish word meaning �mass arrival�) and are thought to lay eggs every two 

years with an average of 2.5 clutches of 90 eggs each season (Turtle Expert Working 

Group 2000).  Nesting begins in March and extends through August with a peak in May 

and early June.   

_______________ 

This thesis follows the style and format of the Journal of Marine Biotechnology. 
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The sex of sea turtles is determined by the temperature of the sand in which the egg 

incubates, with cooler temperatures producing males (Bjorndal 1995).  Eggs hatch 

during the day and the hatchlings enter the surf and eventually move to the pelagic 

environment to begin �the lost year�, a time when they are rarely encountered by 

humans.  Immature (post-pelagic) and adult sea turtles migrate to coastal shallow water 

for benthic foraging.  Adult Kemp's ridleys leave these foraging areas to mate in shallow 

waters.  Adult females leave the waters only to nest while males remain in this habitat 

their entire lives (Bjorndal 1995).  Almost the entire adult female population nests on 

one beach near Rancho Nuevo, Tamaulipas, Mexico, where >40,000 females nested on a 

single day in 1947 (Bowen et al. 1991).  The average annual number of ridley nests 

between 1985 and 1987 dropped to 740 (Márquez et al. 2001).  Due to this dramatic 

reduction in population size, the Kemp�s ridley is listed in the IUCN Red Book of 

Endangered Species (IUCN 2002), and is considered the most critically endangered of 

all seven sea turtle species.     

Causes for the dramatic decline of the Kemp�s ridley population include habitat 

destruction and alteration, poaching for meat and eggs, and incidental capture in shrimp 

trawls.  As early as 1927, protection efforts began in Mexico to prohibit collection of 

turtle eggs and destruction of nests (Trinidad and Wilson 2000).   Throughout the 

1960�s, 70�s and 80�s, further restrictions were enacted by the Mexican government to 

prevent the harvest of Kemp�s ridley for meat and eggs.  Finally, in 1990, poaching 

forced the Mexican government to completely ban hunting and egg collecting.  By 1982 

it was widely accepted that shrimp trawlers captured and drowned more sea turtles 
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worldwide than did any other kind of incidental capture, with this fishery accounting for 

more Kemp�s ridley mortalities than did any other human activity.  In 1989, the National 

Marine Fisheries Service enacted Turtle Excluder Device (TED) regulations in certain 

areas at certain times.  The regulations were subsequently expanded to require TED�s on 

all shrimp and flounder trawlers operating in the southeastern U.S (52 FR 24244).  

Furthermore, in 1991, the U.S prohibited imports of shrimp from nations whose trawling 

practices did not comply with its conservation efforts calling for TED implementation. 

Efforts by the U.S and Mexican governments contributed to an 11.3% mean 

increase in the number of nests observed at Rancho Nuevo beach between 1985 and 

1999.  During the 2000 nesting season, 3778 ridley nests were observed at Rancho 

Nuevo beach (Turtle Expert Working Group 2000).  These reports provide optimism to 

those who predict this population will reach 10,000 nesting females around 2020, a 

target given in the Kemp�s ridley Recovery Plan (USFWS and NMFS 1992).  

When a population undergoes a dramatic reduction in size, or demographic 

bottleneck, it may also experience a genetic bottleneck, where significant losses of 

genetic diversity in the population occur through genetic drift.  The loss of genetic 

diversity can lower the fitness of individuals in that population through the random loss 

of adaptive alleles and through an increase in the expression of deleterious alleles due to 

the increased potential for inbreeding.  Accordingly, evaluating the magnitude of the loss 

of genetic diversity in Kemp�s ridley as well as predicting future potential losses are 

both of major importance to conserve this species.  To achieve this goal, rather than 

focusing exclusively on a census of the population (Nc), it is necessary to determine the 
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effective population size (Ne).  This thesis had two main objectives.  The first objective, 

detailed in the second section of this thesis, explores the relative success of several 

minimally invasive tissue-sampling methods as source of DNA for genetic studies from 

Kemp�s ridley sea turtles.  The second and main objective of this research, detailed in 

the third section, evaluates whether the Kemp�s ridley sea turtle sustained a measurable 

loss of genetic variation resulting from the demographic bottleneck and provides 

estimates of Ne from microsatellite data. 
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ASSESSMENT OF MINIMALLY INVASIVE GENETIC TISSUE SAMPLING 

METHODS FOR THE CRITICALLY ENDANGERED KEMP�S RIDLEY SEA 

TURTLE (LEPIDOCHELYS KEMPII GARMAN 1880) 

OVERVIEW 

  The study of endangered species genetics poses the challenge of collecting DNA 

using non-invasive or minimally invasive techniques.  Such sampling techniques are 

well developed for birds and mammals, but are not applicable to the study of sea turtles. 

This study explored the efficacy of success of several minimally invasive tissue-

sampling methods as a source of DNA to conduct genetic studies on the critically 

endangered Kemp�s ridley (Lepidochelys kempii) sea turtle.  Tissue sampling included:  

blood, cheek swabs, cloacal swabs, carapace scrapings, and a minimally invasive tissue 

biopsy of the hind flipper.  Single copy nuclear DNA loci were PCR amplified with 

turtle-specific microsatellite loci primers.  Blood tissue provided the best extractions of 

DNA for genetic studies on Kemp�s ridleys.  Additionally, archival plasma samples also 

are also a good source of nDNA. However, when minimally invasive techniques are 

required, hind flipper tissue biopsy is best suited for very small individuals and field 

situations since it requires minimal training. 

INTRODUCTION 

The use of molecular genetic techniques in conservation research is widespread 

and will continue to expand with new advances and applications (Hedrick 2001).  The 

advent of PCR (Polymerase Chain Reaction), for instance, expanded the potential to 

conduct genetic analyses since only minute amounts of tissue, preserved in many ways, 
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are required to amplify DNA (Dutton 1996).  The study of endangered species poses the 

additional challenge of collecting tissue using non-invasive or minimally invasive 

techniques (Taberlet and Luikart 1999).  Such techniques have been developed for the 

study of endangered birds and mammals, and DNA obtained from feces, shed hair and 

feathers has been successfully characterized (Morell 1994; Mundy et al. 1997).  

Unfortunately, these techniques are not applicable to genetics studies of sea turtles.   

Sea turtles are one of the most endangered taxonomic groups, with six of the 

seven species listed under the IUCN Red List of Threatened Species (2002) with Kemp�s 

ridley sea turtle (Lepidochelys kempii) considered the most critically endangered.  

Accordingly, efforts to identify minimally invasive methods to obtain DNA samples 

from sea turtles are a priority.  Molecular genetic studies on sea turtles have revealed 

important information for conservation biology including maternal philopatry (Bowen et 

al. 1995), population genetics (Lahanas et al. 1994), paternity (Kichler 1996; Kichler et 

al. 1999) and systematics (Bowen et al. 1991).  Sources of DNA for these studies mainly 

consisted of blood from live animals or other tissue samples from live, dead, or stranded 

specimens.  Sea turtle blood is a good source of nuclear DNA (nDNA) because the 

erythrocytes are nucleated.  However, as Dutton and Balazs (1995) pointed out, this 

sampling method requires considerable training and, therefore, is often impractical in the 

field.  Furthermore, collecting blood from hatchlings or embryos may require killing the 

animal to obtain tissue.  As a minimally invasive alternative, Dutton and Balazs (1995) 

advocated the use of small biopsy darts routinely used to collect tissue from marine 

mammals.  These authors collected tissue from frozen green (Chelonia mydas), 
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leatherback (Dermochelys coriacea), and loggerhead (Caretta caretta) sea turtles being 

held for necropsy, and from live green turtles.  Biopsy of tissue from the axial region of 

the hind flipper of live specimens was the preferred method as it was quick and 

relatively non-invasive, required minimal training, and yielded a sufficient quantity and 

quality of DNA for PCR analysis. 

Other minimally invasive tissue sampling methods are available in addition to 

tissue biopsy.  Tracheal and cloacal swabs have been used in genetic studies of birds 

(Moalic et al. 1998) while carapace scrapings from sea turtles have been used in 

toxicology studies (Wang et al. in press).  The present study explored whether any of 

these minimally invasive tissue-sampling methods could be used as an alternative source 

of DNA to conduct population genetic studies on Kemp�s ridley sea turtles.  

Accordingly, these sampling protocols could be used on hatchlings and other small 

individuals (post pelagic and juvenile) from all sea turtle species.  Furthermore, 

toxicological studies conducted in many species of sea turtles have archived blood 

plasma collections (Tovar et al. 2002).  If blood plasma is a good source of nDNA, such 

depositories would become invaluable sample sources for population genetic studies on 

these endangered species. 

RESEARCH OBJECTIVES 

Objectives of this study included:  1) compare the efficacy of blood tissue to that 

of several minimally invasive tissue-sampling methods in providing a source of DNA for 

genetic studies on the critically endangered Kemp�s ridley (Lepidochelys kempii) sea 
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turtle, and 2) determine if Kemp�s ridley plasma samples archived for toxicological 

studies provide sufficient quantity and quality nDNA for PCR analysis. 

MATERIALS AND METHODS 

Tissue Sampling 

Blood and plasma tissue samples from post-pelagic, juvenile, subadult and adult 

Kemp�s ridleys were provided by the Sea Turtle and Fisheries Ecology Lab at Texas 

A&M University in Galveston. 

In addition, minimally invasive tissue sampling techniques included:  cheek 

swabs, cloacal swabs, and carapace scrapings.  Also, a minimally invasive tissue biopsy 

method was developed.  Tissue samples were taken from juvenile Kemp�s ridley sea 

turtles held at the NOAA/Fisheries Sea Turtle Facility in Galveston, Texas.  

Cheek Swabs 

A large (20 by 5 cm) metal speculum (Webster Veterinary Supply, Houston, TX, 

USA) was required to pry open the turtle�s ptomium.  A foam-tipped swab (Fisher 

Scientific, Pittsburgh, PA, USA) was then introduced to swab the inside of the cheek.  

Finally, the swab was submerged in a 1.5 ml tube containing 200 µl TENS solution 

(50mM Tris-HCl [pH 8.0], 100mM EDTA, 100 mM NaCl, 1% SDS in water). 

Cloacal Swabs 

The inside of the cloaca was swabbed with the head of a foam-tipped swab 

(Fisher Scientific, Pittsburgh, PA, USA) which was then submerged in a 1.5-ml tube 

containing 200 µl TENS solution. 
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Carapace Scrapings 

Carapace scrapings were obtained from turtles that had recently been rinsed and 

left to air dry before their tanks were cleaned and refilled with salt water.  While the 

carapace is drying, the outer cornified dermal layer tends to flake off.  Metal tweezers 

were used to obtain approximately 0.05 g of this layer without causing harm to the sea 

turtle.  Scrapings were then frozen in liquid nitrogen, pulverized into a powder and 

added to 200 µl TENS solution. 

Tissue Biopsy 

Disposable Acu-punches (1.5 and 2 mm) (Acuderm Inc. Fort Lauderdale, Fl, 

USA) were used to obtain tissue from the posterior edge of the rear flippers closest to the 

tail.  Specifically, the biopsy was taken from the soft skin in between scales.  Instead of 

collecting an actual �plug� of tissue (as described by Dutton and Balazs 1995), a half-

circle of tissue approximately 0.5 mm deep was removed from the edge of the flipper.  

Betadine was used before and after the biopsy to prevent infection.  Although, turtles did 

not bleed during this procedure, Neosporin was applied to the site afterward as an 

additional precaution to minimize the potential for bacterial infection. 

DNA Extractions and PCR Amplification 
 

DNA was extracted using a modified phenol-chloroform extraction protocol 

described by Sambrook et al.(1989).  Approximately 0.05 g of tissue (5 µl of blood) was 

placed in a 1.5 µl microcentrifuge tube containing: 200 µl TENS solution (50 mM Tris-

HCl [pH 8.0], 100 mM EDTA, 100 mM NaCl, 1% SDS) and 20 µl Proteinase K (10 
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mg/ml) and incubated overnight at 55oC.  An equal volume of buffer-saturated phenol 

was added and an emulsion formed by gently inverting the microcentrifuge tubes.  The 

tubes were spun for 2 min at 14,000 RPM, and the supernatant was transferred to a pre-

labeled 1.5-ml microcentrifuge tube.  An equal volume of chloroform-isoamyl (24:1) 

was added, and the microcentrifuge tubes were spun for 2 min at 14,000 RPM, and the 

supernatant transferred to a pre-labeled 1.5 ml microcentrifuge tube.  Approximately 700 

µl of 100% cold ethanol and 58 µl of ammonium acetate (7.5 M) were added to 

precipitate DNA.  The tubes were then spun at 14000 RPM for at least 10 min to form a 

pellet.  Ethanol was decanted and the tubes were then placed upside down on a napkin to 

remove most of the remaining ethanol.  The pellets were allowed to air dry for at least 

one hour and the DNA was re-suspended in 100 µl of TE buffer (10 mM Tris-HCl [pH 

8.0], 1 mM EDTA). 

Single copy nuclear DNA loci (ScnDNAs) were PCR amplified with the 

following sea turtle-specific microsatellite primers:  Cc117, Cm72, Cm84 and Ei8 

(Fitzsimmons et al. 1995).  PCR was performed in 12.5 µl volumes consisting of the 

following: 1µl isolated DNA (template); 15.0 pM forward and reverse primer; 200 µM 

each of dATP, dCTP, dGTP, dTTP; 1.5 M MgCl2; 1.25 µl 10 X Platinum Taq 

Amplification Buffer; and 0.5U Platinum Taq DNA polymerase (Invitrogen, Carlsbad, 

CA).  PCR reactions were carried out in an Eppendorf Master Cycler (Eppendorf, 

Hamburg, Germany).  PCR cycles for all four loci were as follows: an initial denaturing 

step at 95oC for 2.5 min, followed by 36 cycles of denaturing at 95oC for 45 sec, 

annealing at 55oC for 1 min, and extension at 72oC for 1 min.  A final 5-min step at 72oC 
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was added to ensure that all products are fully extended.  Negative controls were 

included in all amplification reactions to detect possible cross contamination during 

PCR.  The quality of PCR amplification was determined by visually inspecting the 

product run on a 1.5 % agarose gel (Type I; Sigma-Aldrich, St. Louis, MO). 

Tissue samples from juveniles at the NOAA/Fisheries Sea Turtle Facility, along 

with blood samples (post-pelagic, juvenile, subadult, and adult turtles) provided by the 

Sea Turtle and Fisheries Ecology lab, were amplified at all four loci.  Plasma samples 

were amplified at only locus Cm72. 

Statistical Analysis 

Chi-Square tests determined if the mean amplification success rates among all 

four loci were significantly different from each other in pair-wise comparisons.  In 

addition, pair-wise comparisons were used to determine whether mean amplification 

success differed within loci among tissue sources.  Differences were compared using a 

Chi-Square analysis testing the heterogeneity of the original data matrix using the Monte 

Carlo simulation in the MONTE program of the REAP genetics software package 

(McElroy et al. 1992).  All statistical differences were assigned at a value of (P=.05). 

RESULTS 

The amplification success (%) from plasma and blood tissue samples as sources 

of DNA were compared separately because these tissue types were collected from a 

different sample of Kemp�s ridley sea turtles (Table 1; see Materials and Methods).  

Blood tissue showed no heterogeneity in success rates among loci (P=0.980) and when 
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amplification success rates of plasma and blood samples were compared (at locus 

Cm72), no differences were observed (P=0.150). 

 

 

Table 1.  Amplification Success Rate from Blood and Plasma Sources from Cm72  
    Locus. 

 
DNA Source Microsatellite Loci n PCR Amplifications Success (%)

Plasma (in Heparin) Cm72 81 44 54 
Blood (in Heparin) Cm72 67 53 79 
 
 

  

The percentage rate of success of PCR-amplification for each microsatellite loci 

(Cc117, Cm72, Cm84, Ei8) was determined for respective tissue sources (cheek, cloaca, 

biopsy and carapace) (Table 2).  Pair-wise comparisons revealed that the mean success 

rates for Cc117; Cm84 and Cm72; Ei8 were not significantly different, respectively, 

from each other.  The means for both Cc117 and Cm84 were statistically different from 

those of Cm72 and Ei8 (Table 3).  Cc117 and Cm84, which ranked 1 and 2, respectively, 

in success rate, outperformed the PCR success shown by Ei8 and Cm72.  Ei8 

performance was very poor.  It only amplified in 11% of cases in hind flipper and failed 

in all others.  Cm72 success rate was lower than 14% (mean ~ 10%). 

Because the microsatellites exhibited statistically different success rates, it was 

decided to compare the difference in success rates among and between tissue sources 

within locus.  Amplification success for locus Ei8 was significantly different overall 
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(P=0.040), but none of the pair-wise comparisons were significant.  No differences in 

amplification success were observed for locus Cm72.  For locus Cm84 the amplification 

success from hind flipper and carapace was significantly different (P=0.002). The 

performance of locus Cc117 was heterogeneous when comparing all tissue types 

(P=0.006).   

 

 

Table 2.  Summary of Amplification Success Rates at Each Microsatellite Locus for     
                Sampling Methods Used in This Study.                     
 

DNA Source Microsatellite Loci n Number of 
Successful PCR 
Amplifications 

Success (%) 

Carapace Scrapings Cc117 28 4 14 
 Cm72 28 4 14 
 Cm84 28 6 21 
 Ei8 28 0 0 

Cheek Swabs Cc117 28 23 82 
 Cm72 28 2 7 
 Cm84 28 11 39 
 Ei8 28 0 0 

Cloacal Swabs Cc117 28 18 64 
 Cm72 28 3 11 
 Cm84 28 15 54 
 Ei8 28 0 0 

Hind flipper Cc117 27 27 100 
 Cm72 27 2 7 
 Cm84 27 25 93 
 Ei8 27 3 11 
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Table 3.  P-values for Pair-wise Comparisons among Microsatellite Loci. 
 

Locus Cc117 Cm72 Cm84 Ei8 
Cc117 0 0.036 0.150 0.017 
Cm72 0.036 0 0.042 0.087 
Cm84 0.150 0.042 0 0.016 

Ei8 0.017 0.087 0.016 0 
 

 

 

Although it was determined that within locus PCR amplification success rates 

were not statistically different between tissue sources, mean success rates calculated 

among loci for each tissue source (carapace=12%, cloacal swabs=32%, cheek 

swabs=32%, and hind flipper=53%) were different (Figure 1). 
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                 Figure 1.  Mean Success Rates (%) for Tissue Sources, among All Loci. 
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DISCUSSION 
 

DNA extractions from blood tissue exhibited the greatest PCR amplification 

success rates compared to that of four tissue sources surveyed in this study.  

Additionally, blood tissue performed equally well among all four loci.  By contrast, 

when hind flipper, cheek and cloacal swabs, and carapace were used as DNA source, the 

amplification success rate among all four microsatellite loci was significantly different.  

Overall, loci Cc117 and Cm84 loci provided superior amplicons when compared with 

loci Cm72 and Ei8.  Inspection of the DNA sequences data for Cm72 and Ei8 revealed 

these loci are imperfect (compound) microsatellites (data not shown), containing 2-3 

tandem repeat motifs (GC and GA, respectively) directly adjacent to the targeted 

microsatellite sequence.  The extent to which observed differences in amplification 

success rate can be partially accounted for by the presence of these compound 

microsatellite sequences is unknown. 

The success rate of amplification among the four minimally invasive tissue 

sources surveyed in this study was highly heterogeneous presumably due to poor 

performance of DNA extractions from carapace scrapings.  Only those pair-wise 

comparisons that included this tissue type were found to be significantly different 

(P<0.002).  Although within locus PCR amplification success rates were not statistically 

different between tissue sources, mean success rates calculated among loci for each 

tissue source clearly show that hind flipper biopsy facilitated the greatest amplification 

success rate, followed by cheek and cloacal swabs which were not statistically 

distinguishable from each other.  
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The two least invasive sampling techniques were carapace scrapings and the hind 

flipper biopsy due the ease of sampling in the field, low risk to the sea turtle subjects, 

and no noticeable pain and discomfort to the sea turtle subject.  These two methods 

seemed to be the least stressful to the animals.  The less invasive hind flipper biopsy 

technique developed for this study took less tissue from the animal in comparison to the 

biopsy dart method employed by Dutton and Balazs (1995).  There was no bleeding, 

thus reducing the chance of infection.  The only stressful element during these two 

sampling techniques was the initial handling of the turtle.  However, the limited success 

in PCR amplification from carapace samples renders this methodology impractical.  

Cheek and cloacal tissue swabbing clearly stressed the sea turtles more than the other 

methods.  To collect cloacal swabs the turtles were held vertically in the air during 

sampling, causing the subjects to struggle.  Cheek swabs were very difficult to obtain 

and proved to be dangerous to both the animal and the handler.  The turtles were stressed 

when their ptomiums were pried open.  In addition, this technique poses danger to the 

handler, due to the Kemp�s ridley�s notoriously aggressive nature and strength which 

may inflict significant damage to the hand and fingers.   

The results obtained from DNA extractions from plasma were encouraging, in 

that they consistently amplified locus Cm72, which was one of the most problematic loci 

to amplify.  The success of using plasma as a source of DNA may be partially explained 

by the fact that most plasma samples were pink-pigmented, suggesting that erythrocytes 

remained in the samples after centrifugation. 
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The results of this study demonstrate that blood tissue consistently yielded the 

highest quality of DNA for genetic studies on Kemp�s ridley sea turtles.  Additionally, it 

was found that archival plasma samples are also a good source of nDNA.  This is 

particularly important since archival samples for toxicological studies suddenly become 

reservoirs of valuable information for the study of population genetics of sea turtles. 

However, the results also show that when dealing with very small individuals or field 

situations, the hind flipper tissue-biopsy-technique developed here is the method of 

choice.  This method, in addition to being minimally invasive, is safe for both the animal 

and the handler and provides high quality DNA for genetic studies. 
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GENETIC ESTIMATES OF EFFECTIVE SIZE OF THE KEMP�S RIDLEY SEA 

TURTLE (LEPIDOCHELYS KEMPII) POPULATION 

OVERVIEW 

The critically endangered Kemp�s ridley sea turtle experienced a dramatic 

decline in population size (demographic bottleneck) between the years of 1947 and 1987 

from >40,000 nesting females to an average of 740 ridley nests.  By the 2000 nesting 

season, 3778 ridley nests were observed at Rancho Nuevo beach, Tamaulipas, Mexico.  

Demographic bottlenecks can produce genetic bottlenecks where significant losses of 

genetic diversity in the population occur through genetic drift.  The loss of genetic 

diversity can lower the fitness of individuals in that population through the random loss 

of adaptive alleles and through an increase in the expression of deleterious alleles due to 

the increased potential for inbreeding.  Accordingly, evaluating the magnitude of the loss 

of genetic diversity in Kemp�s ridley as well as predicting future potential losses are 

both of major importance to conserve this species.  To achieve this goal, rather than 

focusing exclusively on a census of the population (Nc), it is necessary to determine the 

effective population size (Ne).  This study sought to estimate Ne from microsatellite data 

and, thus, it is the first attempt to determine whether a genetic bottleneck occurred 

during the historical reduction of the Kemp�s ridley population.  Three alternative 

approaches were used to detect a reduction in effective population size: 1) temporal 

change in allele frequencies, 2) an excess of heterozygotes in progeny, and 3) the 

estimate of the mean ratio (M) of the number of alleles (k) to the range of allele size (r).  

Blood samples were obtained from Kemp�s ridleys caught in the wild.  PCR (polymerase 
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chain reaction) was used to amplify eight sea turtle microsatellite loci 1995 and, allele 

frequencies were determined.  Data from only four of these loci could be used in these 

analyses.  The reduced number of loci was a limiting factor in this study, however, 

despite this shortcoming; results of the three statistical approaches suggest the Kemp�s 

ridley population sustained loss of genetic diversity associated with a demographic 

bottleneck. 

INTRODUCTION 

The IUCN Red Book of Threatened Species identifies six protected sea turtles 

(IUCN 2002).  The most critically endangered of these species is the Kemp�s ridley sea 

turtle (Lepidochelys kempii) found primarily in the Gulf of Mexico but extending into 

the Atlantic Ocean.  Almost the entire adult female population nests on one beach near 

Rancho Nuevo, Tamaulipas, Mexico, where >40,000 females nested on a single day in 

1947 (Bowen et al. 1991).  The average annual number of ridley nests between 1985 and 

1987 dropped to 740 (Márquez et al. 2001).  During the 2000 nesting season, 3778 ridley 

nests were observed at Rancho Nuevo beach (Márquez et al. 2001) (Figure 2).  Models 

project 3000 nesting females by the year 2003 (Turtle Expert Working Group 2000). 

The causes for the dramatic decline of the Kemp�s ridley population include 

habitat destruction and alteration, poaching for meat and eggs, and incidental capture in 

shrimp trawls.  Marine turtle protection efforts began in Mexico in 1927.  Article 97 of 

the Fishery Regulation of February 17, 1927 prohibited collecting turtle eggs and 

destroying nests (Trinidad and Wilson 2000).  Throughout the 1960�s, 70�s and 80�s, 
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further restrictions were enacted by the Mexican government to prevent the harvest of 

Kemp�s ridleys for meat and eggs.  However, regulatory surveillance of the Rancho 

Nuevo nesting beach was weak, and poaching forced the Mexican government to 

completely ban hunting and egg collecting in 1990 (Trinidad and Wilson 2000).  By 

1982 it was widely accepted that shrimp trawlers captured and drowned more sea turtles 

worldwide than did any other kind of incidental capture, with this fishery accounting for 

more Kemp�s ridley mortalities than did any other human activity.  In 1989, the National 

Marine Fisheries Service enacted Turtle Excluder Device (TED) regulations in  

 

 

Figure 2.  Population Estimates for the Kemp�s Ridley Sea Turtle from 1947-2001. 
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certain areas at certain times.  The regulations were subsequently expanded to require 

TED�s on all shrimp and flounder trawlers operating in the southeastern U.S (52 FR 

24244).  Furthermore, in 1991, the U.S prohibited imports of shrimp from nations whose 

trawling practices did not comply with its conservation efforts calling for TED 

implementation. 

        When a population undergoes a dramatic reduction in size, or demographic 

bottleneck, it may also experience a genetic bottleneck characterized by significant loss 

of genetic diversity.  The reduced population is more prone to the effect of random 

genetic drift, where alleles are lost by random variance of both mortality and 

reproductive success of different genotypes (Futuyma 1998) at a rate of [1-1/(2Ne)] per 

generation (Wright 1969).  Thus variation would be lost faster in small populations.  

Furthermore, because many individuals will be related in a reduced population, random 

matings are most likely to be consanguineous.  Effects of such mating events in a 

reduced population would be similar to those of inbreeding (Crow 1986).  For these 

reasons, dramatic reductions in population size are of major concern, because even if 

population size (Nc) recovers to historical levels, effective size of the population (Ne) 

remains low.  In such cases, negative effects of inbreeding and random genetic drift may 

persist for a long time.  This can lead to a decrease in fitness as probability of the 

expression of deleterious alleles in the population increases (Meffe and Carroll 1997) 

and because homogenized populations are more prone to epidemic events.  There is 

abundant evidence of this phenomenon in captivity (Saccheri et al. 1996) and in field 

studies (Madsen et al. 1996; Newman and Pilson 1997).  Accordingly, conservation 
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efforts toward reduced populations should employ estimates of effective population size 

(Ne) instead of the absolute number of individuals to determine the status of those 

populations (Allendorf et al. 1991).  Furthermore, Ne estimates can provide managers 

with an approximation of the amount of genetic loss likely to take place in the future 

(Harris and Allendorf 1989).  

Ne is influenced by the interplay of several demographic factors affecting that 

population.  Futuyma (1998) summarized these factors as follows.  Theoretically, 

maximal Ne is achieved when:  the population size has remained high and constant over 

time, when sex ratio equals unity, each mature individual in the population produces an 

equal number of offspring, and generations do not overlap.  The concept of an equal sex 

ratio assumes a single reproductive event with progeny from one female and one male.  

If sex ratio is skewed in a reproductive event, then whatever gender is in the minority 

will produce more progeny per individual than the gender in the majority.  Other 

demographic factors influencing Ne include variation in number of progeny, overlapping 

generations, fluctuations in population size and migration  

Effective population size for the Kemp�s ridley population is affected by sex ratio, 

multiple paternity, relative paternal contribution and demographic history.  The sex ratio 

of Kemp�s ridley has been estimated to be 1.3 females to 1 male (Coyne 2000).   

Theoretically, this approximately equal sex ratio should maximize effective population 

size.  However, Kemp�s ridley is a polyandrous species (more than two males may 

contribute to a single clutch) with unequal paternal contribution (Kichler et al. 1999).  

Normally, such unequal contribution would tend to reduce Ne (see Sugg and Chesser 
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1994 for an alternative view).  Finally, the ridley�s demographic history (e.g., population 

bottleneck) must be included in models estimating effective population size.  The 

historical reduction in Kemp�s ridley population size may have caused a reduction of Ne 

as the effects of genetic drift would have caused random losses of variation during years 

when the population was smaller. 

Kichler (1996) determined the genetic health of the Kemp�s ridley by comparing a 

sample of this population with one sample of olive ridley sea turtles.  Kemp�s ridley 

samples were taken from 211 nesting females at Rancho Nuevo.  Sixty olive ridley 

samples were taken from nests in one locale in Costa Rica over the course of several 

nesting seasons.  Samples were genotyped at four polymorphic loci, with results 

indicating that Kemp�s ridleys exhibited a comparable number of alleles per loci and 

higher levels of heterozygosity than did olive ridley samples.  However, generalizations 

at the species level cannot be reached from this comparison due to the limited 

geographic range of olive ridley samples.  Olive ridleys are cosmopolitan, and therefore, 

samples from a single nesting locale may not necessarily represent genetic variability of 

the entire species.  Fitzsimmons (1995) obtained heterozygosity values for three of the 

four microsatellite loci used by Kichler (1996).  Fitzsimmons� samples were taken from 

widely separated geographic populations in Australia and heterozygosity values for the 

markers are noticeably different (for two of the three loci used by both authors) (Table 

4). 

 
 



 

 

24

Table 4.  Heterozygosity Values Obtained for the Olive Ridley (Lepidochelys  
                 olivacea) Sea Turtle from Kichler (1996) and Fitzsimmons (1995). 
   

Locus (Kichler 1996) (Fitzsimmons et al. 1995) 
Cm72 0.455 0.9 
Cm84 0.909 0.444 

Ei8 0.896 0.444 
 

 

 

RESEARCH OBJECTIVES AND HYPOTHESIS 

The purpose of this study is twofold.  First, to offer estimates of Ne for Kemp's ridley 

based on microsatellite data obtained from specimens captured in the wild, and 2) based 

on these estimates; determine whether the historical reduction of the Kemp�s ridley 

population caused a genetic bottleneck.  The working hypothesis is that estimates of 

effective population size from genetic data would be significantly lower than the current 

estimates of sexually mature individuals in the population.  

 Empirically derived estimates of effective population size from genetic data often 

differ significantly from a census of the population.  In many marine organisms with 

high fecundity and high mortality rates in early stages (Type III survivorship curves) 

differences up to one order of magnitude (Ne/Nc~0.10) are not rare (Frankham 1995).  In 

terrestrial mammals, the Ne/Nc ratio ranges between 0.25-0.75, with a mean single-

generation estimate around 0.35 (Frankham 1995). The disparity between Nc and Ne 

might be due to the demographic history of the population (e.g., historical bottlenecks), 

and variance in reproductive success among its constituents (Hedgecock 1994).  Given 
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that Kemp�s ridley population does not produce as many offspring as many other marine 

organisms and does not provide the parental care displayed in mammals, it is assumed 

here that their Ne/Nc ratio should fall somewhere in between 0.10 and 0.25. 

Three alternative approaches were used to detect a reduction in Kemp's ridley's Ne 

from microsatellite data. These approaches were: 1) temporal change in allele 

frequencies (Williamson and Slatkin 1999), 2) an excess of heterozygotes in progeny 

(Luikart and Conuet 1999), and 3) a mean ratio (M) of the number of alleles (k) to the 

range of allele size (r) of microsatellite data (Garza and Williamson 2001).  All three 

models assume a single population, as is the case for the Kemp�s ridley population.  In 

the first approach, a temporal shift in allele frequencies would indicate that genetic drift 

had a dramatic effect on the population and, therefore, a significantly reduced Ne.  This 

approach requires all observed loci to be independently segregating, which will be 

determined from a linkage disequilibrium test (Bartley et al. 1992).  The second 

approach is based on the principle that both allelic diversity and observed heterozygosity 

decrease with Ne, however, allelic diversity is reduced more quickly than observed 

heterozygosity.  The observed heterozygosity is therefore larger than the expected 

heterozygosity from the observed number of alleles at a given locus.  It is important, 

however, to note the distinction between a test for excess levels of heterozygosity and a 

test for excess numbers of heterozygotes.  The former test compares the observed 

heterozygosity ( Nei 1987 ) with that expected at mutation-drift equilibrium, whereas the 

latter test compares the observed number of heterozygotes with that expected at Hardy-

Weinberg Equilibrium causing heterozygote excess when testing for Hardy Weinberg 
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Equilibrium.  Finally, the third approach is based on the expectation that the value of M 

decreases when the effective population size has been reduced.  Furthermore, the 

magnitude of decrease in M value positively correlates with severity and duration of 

bottleneck. 

In addition, this research builds upon previous work (Kichler 1996) in furthering our 

understanding of the population genetics on Kemp's ridley in two ways.  First, the 

characterization of the levels of variation of individuals captured randomly (as opposed 

to siblings from a limited number of nests) will give us a more accurate picture of the 

levels of variation contained in the Kemp's ridley population.  Second, characterization 

of the nucleotide sequence of DNA segments containing microsatellites will yield 

valuable information of the mutational processes that may affect these loci.  Such 

information will enable future researchers to select loci that correspond to requirements 

of specific models being tested. 

MATERIALS AND METHODS 

Field Methods 

Blood samples of wild Kemp�s ridleys caught in the Gulf of Mexico were 

obtained by the Sea Turtle and Fisheries Ecology Lab at Texas A&M University at 

Galveston.  Sea turtle capture occurred along beachfronts adjacent to Calcasieu Pass, 

Louisiana as well as in Sabine Pass, Lavaca and Matagorda Bay, Texas.  Capture 

involved 91.5m entanglement nets checked every 20 minutes, with blood samples taken 

within 7-19 minutes post capture.  The life history stages comprising these captures 

included post pelagic, juvenile, sub adult, and adult (n=233) (Figure 3). 
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Figure 3.  Capture Sites for Kemp�s Ridley Sea Turtles Used in This Study. 
 

 

 

DNA Isolation and PCR Amplification Procedures 

Total genomic DNA was isolated from blood following a modified version of the 

protocol described in Sambrook et al. (1989).  Briefly, 5ul of blood were digested 

overnight at 37°C in a 1.5 mL microcentrifuge tube with 20 ul Proteinase K (10 mg/ml) 

in 200 ul TENS solution (50mM Tris-HCl [pH 8.0], 100mM EDTA, 100 mM NaCl, 1% 

SDS).  Total DNA was extracted with one wash of Phenol-Chloroform (25:24) 

extraction, followed by one wash of Phenol-Chloroform-Isoamyl (25:24:1) and ethanol 
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precipitation.  Precipitated DNA was resuspended in 100 ul of TE solution (10mM Tris, 

1mM EDTA in deionized water; pH 8.0).  Single copy nuclear DNA loci (ScnDNA) 

were amplified with polymerase chain reaction (PCR) using sea turtle specific 

microsatellite primer sets (Table 5; Dutton 1995; FitzSimmons et al. 1995; Kichler et al. 

1999).  PCR reactions were carried out in 12.5 µl volumes consisting of the following: 

1µl isolated DNA (template); 15.0 pM of each primer (Table 5); 200 µM each of dATP, 

dCTP, dGTP, dTTP; 1.5 M MgCl2; 0.5U Platinum Taq DNA polymerase, and 1.25 µl 10 

X Platinum Taq Amplification Buffer (Invitrogen, Carlsbad, CA).  PCR reactions were 

carried in an Eppendorf Master Cycler (Eppendorf, Hamburg, Germany). Thermal 

profiles for all four microsatellite loci (Table 5) were as follows: an initial denaturing 

step at 95oC for 2.5 min, followed by 36 cycles of denaturing at 95oC for 45 sec, 

annealing at 55oC for 1 min, and extension at 72oC for 1 min.  A final 5-minute step at 

72oC was added to ensure that all products are fully extended.  Negative controls were 

included in all amplification reactions.  The quality of PCR amplification was 

determined by visually inspecting the product run on a 1.5-% agarose gel (TA buffer) 

(Type I; Sigma-Aldrich, St. Louis, MO) at 100 V for 30 min.



  

29

T
ab

le
 5

.  
Pr

im
er

 S
eq

ue
nc

es
, M

ic
ro

sa
te

lli
te

 A
rr

ay
s, 

Th
er

m
al

 P
ro

fil
es

, a
nd

 D
ye

-L
ab

el
s 

fo
r P

rim
er

s U
se

d 
in

 T
hi

s S
tu

dy
. 

  M
ic

ro
sa

te
lli

te
 

Lo
ci

 
Pr

im
er

 (5
� t

o 
3�

) 
A

rr
ay

 
Th

er
m

al
 P

ro
fil

es
 

D
ye

-L
ab

el
 

(F
or

w
ar

d 
Pr

im
er

) 
R

ef
er

en
ce

 

D
C

99
 

C
A

C
C

C
A

TT
TT

TT
C

CC
A

TT
G

A
TT

TG
A

G
C

A
TA

A
G

TT
TT

C
G

T
G

G
 

n/
a 

1 
n/

a 
D

ut
to

n,
 P

.H
. (

19
95

) 

N
ig

ra
 3

2 
C

G
TG

TG
TT

TG
G

A
C

A
G

A
A

G
A

TG
A

A
C

A
A

A
G

C
A

A
A

C
TT

A
TT

TC
C

G
TG

 

n/
a 

1 
n/

a 
� 

   
   

   
   

   
   

   
   

 �
 

N
ig

ra
 2

00
 

G
C

TA
A

A
G

A
C

C
TA

G
TT

CT
G

C
C

A
TG

TT
C

A
G

TG
G

TT
A

CT
C

A
G

C
A

A
A

G
G

 

n/
a 

1 
n/

a 
� 

   
   

   
   

   
   

   
   

 �
 

C
c1

17
 

TC
TT

TA
A

C
G

TA
TC

TC
C

TG
TA

G
C

TC
C

A
G

TA
G

TG
TC

A
G

TT
C

C
A

TT
G

TT
TC

A
 

(C
A

) 
95

o C 
fo

r 2
.5

 m
in

, 3
6 

cy
cl

es
 

at
 9

5o C
 fo

r 4
5 

se
c,

 5
5o C 

fo
r 

1 
m

in
 a

nd
 7

2o C 
fo

r 1
 m

in
, 

an
d 

fin
al

 e
xt

en
sio

n 
72

o C
 fo

r 
5 

m
in

. 

6-
Fa

m
 

Fi
tz

sim
m

on
s e

t a
l.,

 
(1

99
5)

 

C
m

72
 

C
TA

TA
A

G
G

A
G

A
A

A
G

C
G

TT
A

A
G

A
C

A
C

C
A

A
A

TT
A

G
G

A
TT

A
C

A
C

A
G

C
C

A
A

C
 

(C
A

) 
� 

   
   

   
   

   
   

   
   

   
  �

 
H

ex
 

� 
   

   
   

   
   

   
   

   
   

  �
 

C
m

84
 

TG
TT

TT
G

A
C

A
TT

A
G

TC
C

A
G

G
A

TT
G

A
TT

G
TT

A
TA

G
CC

TA
TT

G
TT

C
A

G
G

A
 

(C
A

) 
� 

   
   

   
   

   
   

   
   

   
  �

 
6-

Fa
m

 
� 

   
   

   
   

   
   

   
   

   
  �

 

Ei
8 

A
TA

TG
A

TT
A

G
G

C
A

A
G

G
C

TC
TC

A
A

C
A

A
TC

TT
G

A
G

A
TT

G
G

C
TT

A
G

A
A

A
TC

 

(C
A

) 
� 

   
   

   
   

   
   

   
   

   
  �

 
Te

t 
� 

   
   

   
   

   
   

   
   

   
  �

 

K
Lk

31
6 

TA
C

A
TC

C
A

TA
C

A
TG

C
A

G
C

C
C

C
C

TG
A

 
M

ul
tip

le
 

ar
ra

ys
 

95
o C 

fo
r 2

.5
 m

in
, 3

6 
cy

cl
es

 
at

 9
5o C

 fo
r 4

5 
se

c,
 6

0o C 
fo

r 
1 

m
in

 a
nd

 7
2o C 

fo
r 1

 m
in

, 
an

d 
fin

al
 e

xt
en

sio
n 

72
o C

 fo
r 

5 
m

in
 

n/
a 

K
ic

hl
er

 e
t a

l.,
 (1

99
9)

 

1.
  M

ul
tip

le
 a

tte
m

pt
s w

ith
 d

iff
er

en
t c

yc
lin

g 
pr

of
ile

s 
fa

ile
d 

to
 g

en
er

at
e 

sp
ec

ifi
c 

pr
od

uc
t.



 

 

30

Direct Sequencing of Microsatellite Loci 

PCR products were purified using ExoSAP-ITTM (USB Corporation, Cleveland, 

Ohio) to remove unincorporated primers.  Purified PCR products were then subject to 

cycle sequencing reactions using the BigDyeTM Terminator Cycle Sequencing Ready 

Reaction Kits (Perkin-Elmer Corporation, Foster City, California).  Unincorporated 

terminators were removed with RapXtractTM Dye Terminator Removal Kit (Prolinx 

Corporation, Bothell, Washington).  Sequences were determined using the ABI 

PRISMTM 310 Genetic Analyzer (Applied Biosystems, Foster City, California). 

Nucleotide sequences were inspected for the presence of tandem repeats to verify that 

each targeted microsatellite locus was amplified. 

Data Analysis 

Microsatellite Data 

Microsatellites are nucleotide sequences characterized by short (2-5 base pairs 

long) tandem repeat regions.  Their fast rate of molecular evolution renders these 

markers extremely effective for assessing the genetic structure of populations.  

Accordingly, they exhibit high levels of variability even in species that are homozygous 

at other loci (Hillis et al. 1996).  However, microsatellite loci data may yield erroneous 

results because mutations in the flanking primer sites can be interpreted as null alleles 

(Hillis et al. 1996).  Homozygotes for such null alleles will not amplify and their 

frequency will be underestimated.  In addition, heterozygotes will be scored as 

homozygotes for the amplifying allele.  This problem was addressed when testing for 
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Hardy-Weinberg Equilibrium with the alternative hypothesis of homozygote excess.  

DNA polymorphisms were characterized with several molecular genetic techniques (see 

below).  Allele frequencies were used to estimate effective population size from nuclear 

DNA. 

Allele Scoring 

After confirming the presence of microsatellite motifs within amplicons, 

additional PCR reactions were setup with the same thermal profiles with the exception 

that forward dye-labeled primers replaced the unlabelled forward primers in all four loci.  

The fluorescent labels employed were 6-FAM, HEX, TET, and TAMRA (Applied 

Biosystems, Foster City, California) (Table 5).  Numerous attempts to setup 

multiplexing failed.  Instead, the resulting reactions for each specimen were mixed 

together so that each sample contained products for all four microsatellite loci.  

Fragment analysis was performed using the GENESCAN 3.1 software (Applied 

Biosystems) as described in the manufacturer's manual (per sample); 1 µl PCR product, 

12 µl formamide-loading buffer, 0.5 µl GeneScan-500 (TAMRA) internal size standard 

(Applied Biosystems).  Prior to loading, the samples were denatured for 2 min at 95oC in 

an Eppendorf Master Cycler  (Eppendorf, Hamburg, Germany).  The internal size 

standard consisted of fragments of known size, which were added to the ABI PRISMTM 

310 Genetic Analyzer along with the samples being investigated.  The Genetic Analyzer 

separated the DNA fragments by electrophoresis, and the GENESCAN software 

determined a sizing curve based on the mobility of known fragments of the size 

standard.  The software then calculated the peak sizes by comparing the mobility of each 
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peak in the sample to the size curve.  For electrophoresis (sequencing) and GENESCAN 

settings, refer to Table 6. 

 

Table 6.  Electrophoretic Profile for Sequencing and GENESCAN Settings Employed in  
                This Study. 
 
Electrophoresis 
 

Module Injection secs. Injection kV Run kV Run oC Run Time (min) 
Seq POP6TM Rapid (1ml) E 40 3.5 15.0 50 36 

 

Genescan 
 

Module Injection secs. Injection 
kV 

Run kV Run oC Run Time 
(min) 

Matrix File 

GS STR POP4 TM 
(1ml) C 

5 15.0 15.0 60 24 GS Fam, Hex, 
Tamra, Tet 

 
 

 

Test for Hardy-Weinberg Equilibrium 

GENEPOP version 3.1 software (Raymond and Rousset 1995) was used to 

calculate observed heterozygosity (HO), expected heterozygosity (HE), allele frequencies, 

number of alleles per locus, and linkage disequilibrium.  Linkage disequilibrium tests in 

GENEPOP were used to determine whether any nuclear markers were located on the 

same chromosome.  Additionally, GENEPOP was used to test for deviation from Hardy-

Weinberg Equilibrium, testing for heterozygote excess and heterozygote deficiency 

using the Markov-chain random walk algorithm described by Guo and Thompson 
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(1992).  These tests were carried out to detect deviations from expected Hardy-Weinberg 

values resulting from mutation, migration, genetic drift and natural selection.  

Temporal Change in Allele Frequencies 

The MLNE (Wang 2001) program uses a pseudo-likelihood method for estimating 

Ne.  This method has been shown to give a more precise measure of Ne than the F-

statistic method (Waples 1989).  Furthermore, this method is flexible, allowing three or 

more temporal samples to simultaneously estimate Ne.  Additionally, this method is 

robust to violations of the assumption of an infinitely large source population and 

therefore, can be used to estimate Ne from a finite source population consisting of one or 

more subpopulations.  The accuracy of this method depends on sample size, number of 

generations, number of independent alleles, and number of independent loci. 

MLNE (Wang 2001) used the moment and likelihood methods to estimate effective 

population size (Ne) and migration rate (m) from temporal and spatial data on genetic 

markers.  Temporal data were taken from samples obtained in 1997, 1998, and 1999.  

Migration rate was not a factor as the Kemp�s ridley most likely consists of a single 

population.  It is unlikely that this single nesting site is subdivided into sympatric 

subpopulations separated by time such as that for salmon runs (Greig and Banks 1999) 

due to varying times these turtles reach maturity (8-13 yrs) and re-nest (1-3 yrs) (Coyne 

2000).  Two separate scenarios were used to obtain estimates of Ne.  

The first scenario was based on age classes used by the Sea Turtle and Fisheries 

Ecology Lab at Texas A&M University at Galveston.  Carapace length (cm) was used to 
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group Kemp�s ridleys into the following classes:  post pelagic (<30 cm), juvenile (~30-

40 cm), sub-adult (~41-59 cm), and adult (≥60 cm).  Individuals were then sorted by 

their respective year of capture (1997, 1998, and 1999) (Table 7) and allele frequencies 

were compared within year among 3 of the 4 age classes (the adult samples were 

excluded because of small sample sizes) such that three estimates of Ne were obtained.  

In a second approach, samples were assigned for each of the three consecutive years of 

capture (1997, 1998, and 1999) respectively, to one cohort that included specimens 

ranging in size between (26 and 40 cm) (Figure 4), corresponding primarily to juveniles, 

but also including post-pelagic individuals.  Accordingly, it was assumed that each 

sample/year represents three separate cohorts or year classes.  Allele frequencies (Table 

8) were compared among cohorts and the data were then used to obtain point (average 

Ne over entire sampling period) and moment estimates (Nes for each sampling period) of 

Ne. 

 

 

Table 7.  Sample Sizes (n) in Each Age Class Used to Calculate Ne for Capture Years  
                1997, 1998, and 1999.  
                 

AGE CLASS 1997 1998 1999 
Post Pelagic n=13 n=11 n=23 
Juvenile n=31 n=18 n=54 
Subadult n=18 n=8 n=28 
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Table 8.  Genetic Characteristics of Four Microsatellite Loci from Three Cohorts of  
 Kemp�s Ridley for Capture Years 1997, 1998, and 1999.  N=Number of     
 Individuals, N (alleles)=Number of Alleles at that Locus, Size is in Base Pairs 
(bp), HEXP=Expected Number of Heterozygotes, and HOBS=Observed Number 
of  Heterozygotes. 

 
 

Locus & 
Characteristics 

1997 Year of 
Capture 

1998 Year of 
Capture 

1999 Year of 
Capture Totals 

CC117 - - - - 
N 41 29 75 145 

N (alleles) 7 7 7 21 
Size Range (bp) 186-206 186-206 186-206 186-206 

HEXP 29.086 19.930 49.020 - 
HOBS 27 22 54 - 

CM72 - - - - 
N 41 29 75 145 

N (alleles) 4 3 4 11 
Size Range (bp) 216-241 226-241 224-241 216-241 

HEXP 25.074 17.175 39.060 - 
HOBS 28 17 34 - 

CM84 - - - - 
N 41 27 75 143 

N (alleles) 9 8 13 30 
Size Range (bp) 312-336 312-334 312-342 312-342 

HEXP 30.296 16.943 57.725 - 
HOBS 27 12 46 - 
EI8 - - - - 
N 42 26 74 142 

N (alleles) 3 4 6 13 
Size Range (bp) 164-172 164-172 162-172 162-172 

HEXP 27.819 18.922 51.531 - 
HOBS 24 14 47 - 

Mean HEXP 28.069 18.243 49.334 31.882 
Mean HOBS 26.5 16.25 45.25 29.333 
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 Figure 4.  Size Frequency Data used to Group Kemp�s Ridley Individuals into  
                   Individual Cohorts Corresponding to Years 1997, 1998, and 1999 for  
                   the MLNE Software.  Cohort Was Determined to be between 26 and  
                   40 cm in Carapace Length. 

 

 

M Ratio 

The M ratio (Garza and Williamson 2001) takes into account not only the allele 

frequency and number of alleles, but also spatial diversity (distance between alleles in 

number of repeats and the overall range in allele size) at each locus.  When a population 

experiences a demographic bottleneck, alleles are inevitably lost through genetic drift.  
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However, because the loss of any allele will reduce the total number of alleles (k), but 

only a loss of the largest of smallest allele will reduce the range of alleles (r), k is 

expected to be reduced more quickly than r.  This is due to the empirical observation that 

allele frequency distributions are not bell shaped.  That is to say rare alleles are not 

necessarily the largest and smallest allele.  If they were, than k would be expected to 

decrease at the same rate as r.  However, since this is not the case, it would be expected 

that r would decrease more slowly than k during a demographic bottleneck. 

The M ratio (number of alleles to range in allele size) (Garza and Williamson 

2001) was estimated with two approaches.  The first program (M_P_Val.exe) was used 

to calculate the empirical M value for the microsatellite data set.  The program simulated 

an equilibrium distribution of M according to the method described in Garza and 

Williamson (2001), and given assumed values for the three parameters.  The three 

assumed parameters values include Theta (4*(historical) Ne*mutation rate), ps (mean 

percentage of mutations that add or delete only one repeat unit), and deltag (mean size of 

larger mutations).  The M is calculated and ranked relative to the equilibrium 

distribution.  There is evidence of a significant reduction in population size if less than 

5% of the replicates are below the observed value.  The estimate of the historical of Ne 

was taken from historical estimates of the total population size in 1947 (162,400) (Carr 

1977).  This estimate was divided by 10 (Nc/Ne~.10, on average) based on the 

assumption that the number of breeding adults (Nc) would be considerably larger than 

Ne.  Also, this procedure would be conservative to avoid a type error.  Mutation rates 

were then estimated for each locus.  Ei8 locus exhibited a mutation rate of 0.023 in the 
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olive ridley (Hoekert et al. 2002).  Mutation rates for Cc117 (0.0022) and Cm72 

(0.0096) loci were extrapolated from Fitzsimmons (1998) work on green sea turtles 

(Chelonia mydas).  Finally, mutation rate for locus Cm84 was inferred from Kemp�s 

ridley (Kichler et al. 1999) and olive ridley (Hoekert et al. 2002) data.  These authors 

were unable to detect mutations among a combined sample of 2168 alleles.  

Accordingly, the mutation rate for this locus was assumed here to be less or equal to 

0.00046.  The estimated mutation rates for all four loci were averaged and divided by the 

mean estimated generation time (10 yrs) for the Kemp�s ridley (Coyne 2000) to obtain 

an average mutation rate, per locus, of 0.00088 per generation.  The deltag and ps values 

were derived from the data for all four microsatellite loci. 

The second program, Critical_M.exe., calculated a critical M, through a 

simulation described in Garza and Williamson (2001) for a given microsatellite data set 

taken from the number of individuals sampled, number of loci, and three assumed 

parameter values for a two-phase mutational model.  Ten thousand simulation replicates 

were performed and an M ratio was calculated for each.  These values were ranked and 

M-critical was defined as the number which only 5% of the simulations fell below. 

The mean M value from the M_P_val.exe was used as the empirical M value 

derived from microsatellites surveyed in this study among 215 individuals.   The M 

critical.exe program calculated an M-critical value.  The M-critical tested whether the 

data were a sample from a population that had experienced a recent bottleneck.  This 

value is not based on empirical data; instead it is derived from the average of 10,000 

replicates of a sample with the same number of individuals, a particular mutation rate, 
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and an average size of non-one-step mutations present in a particular proportion.  The 

mean M value from the M_P_val.exe program was calculated as an average of the M 

ratios for all 4 loci.  The empirical value of M was compared with the critical M and an 

empirical M smaller than the M-critical would indicate a bottleneck. 

Two M-critical and empirical M values were calculated based on two mutation 

rate estimates; one including all four loci and one excluding locus Ei8.  This is due to the 

extremely high rate of mutation observed by Hoekert et al. (2002) for the olive ridleys 

at locus Ei8 (~10-2).  High levels of mutation may counteract effects of genetic drift by 

replacing alleles just as soon as they are lost.  This trend is evident in the fact that the 

Ei8 locus is not missing any alleles within its range (162-172 bp).  Accordingly, due to 

the fact that the M ratio program takes into account spatial diversity (distance between 

alleles in number of repeats and the overall range in allele size) at each locus, the Ei8 

locus may bias the results of this study. 

RESULTS 

Microsatellite Loci 

Loci targeted with primer sequences DC99, Nigra 200, Nigra 32 (Dutton 1995), 

failed to amplify specific product for Kemp�s ridley samples.  Primer sequences 

(KLk316) from Kichler (1999) amplified well; however, upon inspection of DNA 

sequences revealed this locus to be imperfect (compound) microsatellites, containing 

multiple tandem repeat motifs within the sequence (Figure 5).  Compound 

microsatellites may violate the assumption of a mutational model since both tandem 
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repeats may be affected simultaneously, and for this reason, this locus was excluded 

from further analysis. 

Four primer sequences (Cc117, Cm72, Cm84, and Ei8) designed by Fitzsimmons 

(1995) amplified successfully.  Direct sequencing of these amplicons confirmed the 

presence of microsatellite loci (all CA arrays), and these microsatellite loci appear to be 

orthologous with those identified by Fitzsimmons.  Refer to Table 9 for size (base pairs), 

range, and number of alleles for these four loci. 

Linkage Disequilibrium and Hardy Weinberg Equilibrium 

Genotypic disequilibrium tests for all pair wise comparisons revealed all four loci 

to be unlinked (not on the same chromosome) (P=0.342 for Cc117-Ei8, P=0.170 for 

Cc117-Cm72, P=0.143 for Ei8-Cm72, P=0.315 for Cc117-Cm84, P=0.397 for Ei8-

Cm84, P=0.921 for Cm72-Cm84).  Hardy-Weinberg tests for heterozygote excess and 

deficiency revealed that 3 out of 4 loci were heterozygote deficient (P=0.422 for Cc117, 

P=0.000 for Ei8, P=0.002 for Cm72, P=0.000 for Cm84) and that none of the four loci 

showed an excess of heterozygotes (P>0.05).  For a summary of these data, refer to 

Table 9.  
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Table 9.  Summary of Results from GENEPOP Software Including Observed    
    Heterozygosity (HO ), Expected Heterozygosity (HE ), and P-Values 

                for Tests of Hardy Weinberg Equilibrium (Probability test, He excess  
    and He Deficiency). 
 

 
Microsatellite 

Locus 
Base pairs 

(range) 
Number 
of alleles 

N (alleles 
sampled) 

HO HE Probability 
Test 

Ha= H 
deficiency 

Ha= H 
excess 

Cc117 186-206 8 424 0.693 0.684 0.422 0.813 0.161 
Cm72 216-241 5 424 0.547 0.568 0.002 0.000 1 
Cm84 312-342 15 420 0.557 0.736 0.000 0.000 1 

Ei8 162-172 6 418 0.579 0.690 0.000 0.000 1 
(Average) n/a 8.5 210.75 0.594 0.670 n/a n/a n/a 

 
 

 

Ne Estimates from Temporal Change in Allele Frequencies 

Three estimates of Ne were obtained from temporal allele frequency data for 

years 1997, 1998 and 1999 by comparing age classes (post-pelagic, juvenile, and 

subadult) within each year.  The Ne estimate for 1997 was ~238 (moment estimate) and 

~1954 (point estimate) individuals (95% CI = 45.48, 5000), for 1998 was infinite 

(moment estimate) and ~8565 (point estimate) individuals (95% CI = 35.64, 30000), and 

for 1999 was ~215 (moment estimate) and ~4958 (point estimate) individuals (95% CI = 

83.68, 5000).  A fourth estimate of Ne was obtained by comparing allele frequencies of 

one cohort for three different years (1997, 1998, and 1999).  This second scenario 

produced a Ne estimate of ~29 (moment estimate) and ~181 (point estimate) individuals 

(95% CI = 72.02, 9000) (Table 10). 

 

 



 

 

43

M Ratio  

An M-critical and empirical M were calculated for two scenarios:  a data input 

file excluding the Ei8 locus, and an input file including the Ei8 locus.  In both cases, the 

empirical value of M was larger than the M-critical value.  However, the empirical M 

and M-critical were much closer in the scenario excluding the Ei8 locus (Table 11).  

 

Table 10.  Ne Estimates from the MLNE Program for Age Class Data  
                 (1997, 1998, and 1999) and for Cohort Data. 
 

Ne Estimates Moment 
Estimates 

Point Estimates 95% Confidence 
Interval 

1997 
DATA 

237.7 1953.45 45.48, 5000 

1998 Data Infinite 8564.42 35.64, 30000 
1999 Data 214.73 4957.36 83.68, 5000 

Cohort Data 28.21 180.34 72.02, 9000  
 

 

 

Table 11.  Scenarios Used to Obtain M-values for Microsatellite Data from Kemp�s  
                     Ridley Population and Results (M-values). 
 

Loci Included Theta (θ) M-critical M (empirical) 
Cc117, Cm72, Cm84 19.49 0.670 0.683 

Cc117, Cm72, Cm84, Ei8 57.18 0.696 0.747 
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Table 12.  M Ratios (# of Alleles/Range of Alleles) for Loci Used  
                  in This Study 
 

Locus M ratio 
Cc117 0.727 
Cm72 0.385 
Cm84 0.875 

Ei8 1 
 

 

Additionally, M ratio�s were calculated for each locus (Table 12) with M_P_val.exe 

program, and these ratios were used to calculate and interloci variance (σ = 0.058) using 

the standard formula for variance [Σ(X-µ) 2 ÷ N] (Sokal and Rohlf 1995). 

DISCUSSION 

Three of four loci used in this study deviated from the expectations of Hardy-

Weinberg equilibrium.  Deviations from the Hardy-Weinberg equilibrium could indicate 

the effects of any of the following:  Selection, migration, non-random mating structure 

(inbreeding), linkage, presence of null alleles and mutation.  Selection pressure is 

unlikely to influence allele frequencies in microsatellite loci since microsatellite loci 

typically are non-coding regions not likely subject to selection.  Migration can be 

ignored, since virtually this entire species consists of one population.  Linkage can be 

ruled out as genotypic disequilibrium tests revealed that all four loci were independent 

from one another.  Presence of null alleles also may lead to a heterozygote deficiency 

because homozygotes would not be scored and heterozygotes would be scored as 

homozygous individuals.  Kichler (1996) obtained heterozygosity values for three of 
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four loci characterized in this study.  She tested for heterozyote deficiency and found 

that all her values fit into Hardy-Weinberg expectations.  Heterozygosity values for this 

study were lower than those obtained by Kichler for the same loci (Table 13).  However, 

heterozygosity values (observed/n) calculated from Table 8, fluctuated among cohorts 

(1997, 1998, and 1999).  Kichler evaluated heterozygosity based on samples from 211 

nests laid during a single arribada.  Assuming her sample was representative of the 

cohort recruiting the following year, the magnitude of the difference in heterozygosity 

values are in agreement with the changes in heterozygosity and allele frequency 

observed among cohorts in this study.  Therefore, observed differences in heterozygosity 

between this study, and Kichler (1996) are most likely accounted for by temporal change 

in allele frequencies and not null alleles. 

 
 
 
 
Table 13.  Comparison of Observed Heterozygosity (Ho) Values for This Study, with             
      those Obtained by Kicher (1996). 
 

Locus Ho (Kichler 1996) Ho (This study) 
Cm72 0.49 0.547 
Cm84 0.720 0.557 

Ei8 0.708 0.579 
 

 
 

Fitzsimmons (1995) offered another explanation for heterozygote deficiency in sea 

turtle microsatellite loci.  She designed primers to test for polymorphism within sea 

turtle species and the persistence of microsatellites across species (excluding 



 

 

46

Lepidochelys kempii).  She observed that heterozygosity was higher in source species 

(those for which primers were designed) by comparing mean heterozygosity from non-

source species with those of source species.  Because primers for this study were taken 

from Fitzsimmons and were from non-source species, then perhaps primers designed for 

Kemp�s ridley may have yielded higher levels of heterozygosity.  However, it should be 

noted that although mean heterozygosity values at each locus were significantly different 

overall between source and non-source species (Fitzsimmons, 1995), some none-source 

species showed heterozygosity values comparable to those of the source species.  For 

example, locus Cm72 had a heterozgosity value of 0.900 for both Chelonia mydas and 

Lepidochelys olivacea.  Similarly, locus Cc117 (source species, Caretta caretta) had a 

heterozygosity value (0.791) lower than the non-source Chelonia mydas.  Lastly, high 

mutation rates may effect expectations of Hardy-Weinberg equilibrium.  This may apply 

to loci Ei8, where an estimated mutation rate of 0.0023 per generation has been derived, 

but not for the other two loci that deviated from Hardy-Weinberg equilibrium.  

Excluding Ei8, the highest mutation rate for any given locus used in this study was 

0.00096 per generation.  This translates into one mutant in 10,000 births per generation, 

a value unlikely to cause any deviation from expectations of Hardy-Weinberg 

equilibrium.  Inbreeding is the most likely explanation for the heterozygote deficiency 

found in this study, and is supported by the demographic history of the species. 

Temporal allele frequency data provided four very different estimates of Ne with 

extremely wide confidence intervals.  The three estimates based on age classes were 

problematic due to small samples sizes.  Although allele frequency data were obtained at 
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all four loci for most of the 215 individuals, resulting sample sizes were small when the 

data were assigned first into year classes and then again to three different age classes.  

For example, the year 1999 contained most individuals (110), but when divided into 

three age classes, each age class (post-pelagic, juvenile, and subadult) contained only 23, 

54, and 28 individuals, respectively.  Therefore, temporal data based on age classes for a 

certain year, were not a good approach to estimate Ne because much larger sample sizes 

are required. 

The estimate of Ne based on size cohorts would likely be a more realistic measure of 

Ne for this study since larger sample sizes were available.  The size cohorts for each year 

(1997, 98 and 99) comprised over half of the samples taken for that year and contained 

sample sizes of 41, 27 and 75 individuals, respectively.  Although these samples sizes 

cannot be considered large, they are much larger than the sample sizes used for age class 

data and provide a more accurate estimate of Ne from temporal data. 

The accuracy of this method depends on sample size, number of generations, and 

number of independent alleles.  The pseudo-likelihood method would likely provide a 

more accurate measure of Ne for the Kemp�s ridley population if these above factors 

were optimized.  Optimizing these factors would require a greater number of 

polymorphic microsatellite loci, specifically designed for the Kemp�s ridley, as well as 

more temporally spaced data samples.  A suggested approach to obtain such temporal 

data would be to sample hatchlings for at least 2-3 seasons consecutively.   

The results for the M ratio analysis indicated that, for both scenarios (excluding Ei8 

locus and including Ei8), the empirical M values obtained did not fall below either of the 
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M critical values.  Accordingly, neither of the empirical M values obtained in this study 

are significantly different from the expected value for a population at equilibrium 

according to the mutation rate and historical Ne  defined.  Garza and Williamson (2001) 

demonstrated that collecting data from more loci (seven or more) gives greater 

confidence to infer a reduction in effective population size from the M estimate.  This is 

due to the fact that genetic drift is random and genetic losses are stochastic with regard 

to which loci were affected by a demographic bottleneck. Accordingly, this study may 

have characterized loci that were not affected as much as others.  Furthermore, Garza 

and Williamson (2001) found a relationship between number of loci sampled and critical 

M value.  They found that as one increased the number of loci sampled, critical M value 

increased as well.  The fact that only 3 and 4 markers were used to obtain results for this 

method could have greatly impacted critical M values and, therefore, conclusions drawn 

from these results.  As noted above, the M-critical and empirical M values for the 

scenario excluding the Ei8 locus were close to being significant (M-critical=0.670, 

empirical M=0.683). 

Although neither empirical M fell below its critical M value, both empirical M 

values suggest some degree of historical reduction in effective size.  Garza and 

Williamson (2001) calculated M ratios for various data sets compiled in the literature.  In 

all cases, the M ratio for populations that had not suffered a reduction in size were 

greater than 0.82, and all populations that were known to have suffered a reduction in 

size were less than 0.70.  The empirical M obtained by this study falls in between 

(0.747) these values and the other falls below (.683) that of wild populations at 
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equilibrium.  This suggests that the population bottleneck by the Kemp�s ridley in the 

second half of the twentieth century caused a reduction in the genetic diversity, but not 

to the degree of other populations surveyed by Garza and Williamson (2001).  

Another factor affecting Ne that could possibly account for the empirical M is 

reproductive variance (unequal reproductive output from females to a cohort).  A large 

reproductive variance translates into a smaller Ne as the survival of some nests or 

hatchlings (potential recruits) would be better and therefore biased.  Accordingly, over 

several spawning events, those females with higher fitness (nest size or hatchling 

survival) could produce a great number of recruits.  Thus, by having unequal 

contribution, the Ne of any new cohort would be smaller than the parental population 

since it is not a random representation of equal female contribution but rather a sub-

sample of the parental population.  In a very small population, such as the Kemp�s 

ridley, this would translate into random loss of alleles (k) through genetic drift.  On the 

other hand, if the reproductive variance is small, any new cohort would be a 

representation of equal female contribution and loss of alleles through genetic drift 

would not be nearly as large.  Accordingly, a small reproductive variance in the Kemp�s 

ridley population could account for a larger M value than expected as the loss of alleles 

(k), was relatively small considering the demographic history of the species. 

Finally, results obtained from the M ratio method suggest that the inclusion of Ei8 

locus into M estimates is not appropriate because its high mutation rates negate any 

potential loss of alleles due to random genetic drift.  While results for the M ratio as an 

indicator of reduction in Ne were not significant, most likely due to the small number of 
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loci sampled, it should be noted that this study sampled a large number of individuals 

and was able to offer some evidence of a reduced Ne from the empirical M.  In order to 

obtain conclusive results for the M ratio, further studies must employ a larger number of 

polymorphic microsatellite loci. 

Results of the indirect methods employed to detect a reduction in Ne taken together, 

provide evidence to support the hypothesis that the demographic history of this species 

had an impact on the genetic diversity of the population.  Furthermore, the empirical 

estimate of Ne (~181 individuals) for the Kemp�s ridley population was less than one 

order of magnitude smaller than the latest census estimate of breeding adults totaling 

4500 individuals (Coyne 2000; Turtle Expert Working Group 2000).  The Ne/Nc ratio 

was 0.04, which was lower its expected value (Frankham 1995; Hedgecock 1994). 

Such reduced Ne for the single population of Kemp�s ridley poses serious 

conservation implications due to its heightened vulnerability to environmental and 

epidemic events.  A single catastrophic event affecting Rancho Nuevo beach during the 

height of the arribada could prove devastating.  Additional efforts to imprint Kemp�s 

ridleys to new nesting beaches, such as the program at Padre Island National Seashore 

(Shaver 2001), are essential to the avoid extinction of this species.  The establishment of 

additional breeding populations would minimize the threat to the species in the event of 

a catastrophe.  Furthermore, an estimate of Ne for this species allows for 

recommendations about a minimum viable population (MVP) size.  Franklin (1980) 

suggested a minimum Ne of 50 to maintain short-term fitness (i.e. prevent inbreeding 

and its deleterious effects).  He further recommended a minimum Ne of 500 to maintain 
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sufficient genetic variation for adaptation to changing environmental conditions.  Using 

this latter MVP value and assuming that 0.04 is an accurate Ne/Nc ratio for the Kemp's 

ridley population, then a MVP should consist of 12,500 individuals.  Finally, a Ne 

estimate can be used to calculate the proportion of original heterozygosity remaining 

after each generation (H) for a population of breeding adults (Ne), where: H= [1-1(2Ne)], 

and the proportion remaining after t generations (Ht) is equal to: Ht = Ht (Wright 1969).  

For this data, substituting Ne= 181 individuals gives an H of 0.997 % of original 

heterozygosity remaining after 1 generation.  To calculate how much variation will 

remain in the next 1000 years, and assuming 10 years as generation time (Coyne 2000), 

then 100 generations later there would be: 0.997100= 0.758, or close to 25% of 

heterozygosity lost (assuming no mutation) in such relatively short period of time.  

However, since mutation rate for coding genes is assumed to be slow, a 25% loss of 

heterozygosity can be expected in the next 1000 years.  These values calculated from the 

estimate of Ne for the Kemp�s ridley, have consequences regarding the recovery plan for 

this species.  A goal of this plan is a population of 10,000 nesting females by the year 

2020, at which point the species could be down listed (USFWS and NMFS 1992).  

While this number is in agreement with the MVP estimate presented here, it would be 

useful to re-evaluate the target population with a Ne estimate that includes samples from 

Kemp's ridleys nesting in Texas, along the State of Veracruz, Mexico, and other satellite 

nesting beaches.  Additionally, it is essential to maintain rigorous management 

recommendations listed under the recovery plan even after the Kemp�s ridley is down 

listed, in light of the potential 25% heterozygosity loss over the next 1000 years. 
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In a survey of the levels of variation from microsatellite data, DeWoody and Avise 

(2000) found that in freshwater fish, heterozygosity values are much lower with mean 

heterozygosity (h=0.46) and mean number of alleles per locus (a=7.5) than in marine 

fishes where h=0.79 and a=20.6, where as in non-piscine animals, values of h and a were 

0.58 and 7.1, respectively.  Anadromous fish were intermediate to marine and freshwater 

fish (h=0.68 and a=11.3. Accordingly, Kemp�s ridley data values (h=0.67 and a=8.5) are 

more similar to anadromous fishes, although heterozygosity levels in Kemp's ridleys 

must be lower today than prior to the bottleneck.  It is also worthwhile to note that this 

study suggests that Kemp�s ridley may not have experienced historical bottlenecks (prior 

to human detrimental activities) which affected other sea turtle species such as the 

loggerhead (Caretta caretta) starting 10,000 years ago (Hatase et al. 2002).  

Further studies should attempt to gather temporally spaced samples from hatchlings 

in order to detect fluctuations in allele frequency over time in order to provide better 

estimates of Ne.  More importantly, future studies must survey a greater number of 

polymorphic microsatellite loci designed specifically for the Kemp�s ridley sea turtle to 

obtain more accurate confidence limits around the estimate of Ne. 
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CONCLUSIONS 
 

It was demonstrated that blood tissue consistently yields the highest quality of 

DNA for genetic studies on sea turtles.  Additionally, it was found that archival plasma 

samples are also a good source of nDNA.  This is particularly important since archival 

samples for toxicological studies suddenly become reservoirs of valuable information for 

the study of population genetics of sea turtles.  However, the results also show that when 

dealing with very small individuals or when working in field situations, the hind flipper 

tissue-biopsy-technique developed for this study is the method of choice.  This method 

in addition to being minimally invasive is safe for both the animal and the handler and 

provides high quality DNA for genetic studies. 

Results of the indirect methods employed to detect a reduction in Ne (effective 

population size) taken together, provide evidence to support the hypothesis that the 

demographic history of this species had an impact on the genetic diversity of this 

population.  Furthermore, the empirical estimate of Ne (~181 individuals) for the Kemp�s 

ridley population was less than one order of magnitude smaller than the latest census 

estimate of breeding adults. 

Such reduced Ne for the single population of Kemp�s ridley poses serious 

conservation implications due to its heightened vulnerability to environmental and 

epidemic events.  A single catastrophic event affecting Rancho Nuevo beach during the 

height of the arribada could prove devastating.  Additional efforts to imprint Kemp�s 

ridleys to new nesting beaches, such as the program at Padre Island National Seashore 

are essential to the avoid extinction of this species.  The establishment of additional 
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breeding populations would minimize the threat to the species in the event of a 

catastrophe.  Furthermore, an estimate of Ne for this species allows for recommendations 

about a minimum viable population (MVP) size.  Finally, a Ne estimate can be used to 

calculate the proportion of original heterozygosity remaining after each generation (H) 

for a population of breeding adults (Ne).  These values calculated from the estimate of Ne 

for the Kemp�s ridley, have consequences regarding the recovery plan for this species.  

Further studies should attempt to gather temporally spaced samples from hatchlings 

in order to detect fluctuations in allele frequency over time in order to provide better 

estimates of Ne.  More importantly, future studies must survey a greater number of 

polymorphic microsatellite loci designed specifically for the Kemp�s ridley sea turtle to 

obtain more accurate confidence limits around the estimate of Ne. 
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APPENDIX B 
 
Raw Data for Allele (Base Pairs) Scoring for Each Successfully Amplified 
Kemp�s ridley Blood Sample at each of the Four Microsatellite Loci.  An   
Empty Space Means that the Allele Size/s could not be Read From the 
GENESCAN Software. 
 

Individual 
Cc117 

Microsatellite loci 
Cm84 

Microsatellite loci 
Ei8  

Microsatellite loci 
Cm72 

Microsatellite loci 

SP97-5-2 186 198 320 332 164 170 226 
SP97-5-3 198 200 312 170 226 
SP97-5-4 198 312 324 164 170 239 
SP97-5-5 198 200 312 318 170 172 239 241 
SP97-5-8 198 314 324 172 226 236 
SP97-5-9 186 192 330 332 170 226 239 
SP97-5-10 194 198 312 320 164 226 241 
SP97-5-11 198 312 164 226 
SP97-5-12 194 200 312 316 170 172 224 
SP97-5-13 186 198 312 170 226 239 
SP97-5-15 186 198 312 164 172 224 226 
SP97-5-16 186 198 312 334 164 226 
SP97-5-17 198 314 332 164 170 226 239 
SP97-5-18 186 330 336 164 170 226 239 
SP97-5-19 200 330 336 164 170 226 239 
SP97-5-20 200 312 170 226 
SP97-5-21 186 198 312 170 226 239 
SP97-5-22 186 198 320 330 164 226 239 
SP97-5-23 200 312 170 239 
SP97-5-24 186 198 332 172 226 239 
SP97-5-25 186 198 320 332 164 239 
SP97-5-27 200 312 164 170 226 239 
SP97-5-28 198 200 320 332 170 172 226 
SP97-5-29 186 200 332 164 170 226 
SP97-5-30 198 312 332 164 172 239 241 
SP97-5-31 186 198 332 172 226 241 
SP97-5-32 194 198 312 164 170 226 239 
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SP97-5-33 198 312 164 172 226 
SP97-5-34 198 200 312 164 226 
PL96-7-3 194 198 312 314 162 172 239 
SP97-6-1 198 320 332 164 239 241 
SP97-6-10 186 198 312 332 170 172 226 
SP97-6-11 186 200 312 164 170 226 239 
SP97-6-12 186 198 312 336 170 172 226 
SP97-6-13 198 312 324 164 170 216 226 
SP97-6-14 194 198 312 324 164 172 226 
SP97-6-15 194 200 312 320 164 172 226 239 
SP97-6-17 196 198 312 170 239 241 
SP97-6-18 198 320 332 164 170 239 241 
SP97-6-19 186 200 312 164 172 226 239 
SP97-6-20 186 200 312 332 170 172 226 241 
SP97-6-21 200 312 170 226 
SP97-6-22 186 200 312 164 170 226 239 
SP97-6-23 186 200 332 336 164 226 239 
SP97-6-24 186 200 312 172 226 
SP97-6-25 198 312 332 164 170 226 239 
SP97-6-27 198 206 312 330 164 170 226 
SP97-6-28 198 312 330 170 226 
SP97-6-29 186 200 320 332 172 226 
SP97-6-30 196 200 312 164 226 239 
SP97-6-31 200 206 312 334 170 172 226 239 
SP97-6-32 198 200 312 330 164 170 226 239 
SP97-7-4 186 200 320 332 164 226 239 
SP97-7-7 200 206 320 170 239 
SP97-7-8 200 206 312 334 172 226 
SP97-7-11 186 198 312 332 170 172 226 
SP97-7-12 188 200 312 330 170 172 226 239 
SP97-7-13 198 200 312 332 170 225 239 
SP97-7-17 186 200 312 320 170 172 226 239 
SP97-7-18 186 200 332 170 239 241 
SP97-7-20 200 312 332 170 241 
SP97-7-21   170  
SP97-7-23 186 198 312 164 172 239 241 
SP97-8-2 198 200 330 332 170 226 239 
SP97-8-3 198 200 312 324 164 172 226 
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SP97-8-4 186 198 320 324 170 172 226 239 
SP97-8-5 198 200 312 164 172 239 
SP98-5-1 200   226 239 
SP98-5-2 200 312 330 164 172 239 
SP98-5-3 200 312 332 170 226 239 
SP98-5-4 188 200 312 170 172 226 241 
SP98-5-5 198 200 312 164 170 226, 241 
SP98-5-6 186 200 324 332 170 226 239 
SP98-5-7 198 200 312 164 170 226 239 
SP98-5-8 198 206 328 332 172 226 241 
SP98-5-9 186 198 324 330 164 170 226 239 
SP98-5-10 186 198 324 334 170 172 226 
SP98-5-11 186 200 320 334 164 170 226 239 
SP98-5-12 186 198 312 164 172 226 239 
SP98-5-13 188 200 312  239 
SP98-5-15 198 200 312 164 170 226 
SP98-5-16 196 200 312 320 166 239 
SP98-5-17 188 200 312 164 226 239 
SP98-5-18 196 198 312 164 172 239 
SP98-5-19 186 198 332 164 172 226 239 
SP98-5-20 198 200 312 166 170 239 
SP98-5-21 198 312 164 226 
SP98-5-22 186 200 322 170 226 
SP98-5-24 186 200 312 164 172 239 241 
SP98-5-25 200 312 324 164 172 239 241 
SP98-5-26 186 200 312 172 226 
SP98-5-27 192 200 312 324 164 226 241 
SP98-5-28 186 200 334 164 226 241 
SP98-5-29 186 198 312 320 166 170 226 239 
SP98-5-30 198 200 324 164 239 
SP98-5-33 200 314 332 164 170 226 241 
C98-6-1 198 200 312 166 239 
C98-6-2 200 312 170 226 239 
C98-6-4 186 198 330 332 164 170 226 241 
C98-6-5 198 200   226 241 
C98-6-6 186 200 328 164 172 226 239 
SP98-6-1 200 312 164 170 226 239 
C98-7-1 186 200 312 332 172 226 239 
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C98-7-2 198 200 312 332 164 226 
C98-7-3 198 200 312 164 170 226 239 
C98-8-1 198 332 170 172 226 
SP98-8-1 198 312 170 226 
M99-5-1 198 200 330 332 170 239 
M99-5-2 200 312 320 164 170 226 
M99-5-5 186 198 320 332 170 172 239 241 
M99-5-6 200 320 332 164 170 226 239 
C99-5-1 186 200 314 324 164 172 226 239 
C99-5-2 186 198 312 330 170 226 
C99-5-3 198 200 314 332 164 170 226 
C99-5-4 200 312 320 170 226 
C99-5-5 186 200 332 336 164 226 239 
C99-5-6 200 312 324 168 170 226 
C99-5-7 198 200 312 164 226 
C99-5-8 186 200 312 324 170 239 
C99-5-9 186 200 312 164 170 226 
SP99-5-1 198 200 312 164 170 226 239 
SP99-5-2 186 200 312 164 226 
SP99-5-3 200 312 320 164 170 226 
SP99-5-4 186 200 312 334 164 226 241 
SP99-5-5 200 312 164 170 226 239 
SP99-5-6 198 200 312 164 172 239 
SP99-5-7 186 200 312 332 164 172 226 239 
M99-6-1 198 200 324 334 170 172 226 
C99-6-1 198 200 322 324 164 172 226 
C99-6-2 194 200 312 332 164 170 226 
C99-6-3 200 312 170 226 241 
C99-6-4 186 198 324 166 170 226 239 
C99-6-5 198 200 312 166 170 239 241 
C99-6-6 198 312 164 226 239 
C99-6-7 186 198 312 324 164 166 226 
C99-6-8 186 198 312 334 164 170 226 239 
C99-6-10 186 198 312 334 170 172 226 241 
C99-6-11 188 198 314 330 164 170 226 239 
M99-7-1 198 200 324 170 226 239 
M99-7-2 200 312 330 164 170 226 
M99-7-3 188 198 312 320 170 226 
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M99-7-4 186 198 330 332 164 170 226 239 
M99-7-5 198 312 332 164 170 226 
C99-7-1 198 200 314 332 164 170 226 
SP99-7-1 196 198 312 170 226 
M99-8-1 188 198 312 164 172 226 241 
M99-8-2 198 200 312 330 164 226 
M99-8-3 198 312 324 164 166 226 239 
M99-8-4 198 312 336 170 226 239 
M99-8-5 198 200 334 166 226 239 
M99-8-6 198 320 170 226 
M99-8-7 200 312 330 166 226 239 
M99-8-8 198 312 166 172 226 
M99-8-9 188 200 334 166 170 239 241 
M99-8-10 198 200 312 170 226 239 
M99-8-11 200 332 170 172 226 239 
M99-8-12 186 198 312 320 166 170 241 
C99-8-1 198 200 330 334 164 226 
C99-8-2 198 330 170 172 226 239 
C99-8-4 198 200 332 342 170 172 226 
C99-8-5 198 332 342 164 170 226 
C99-8-6 188 198 330 332 164 172 224 
C99-8-7 186 198 312 164 172 239 241 
C99-8-8 198 200 312 332 164 172 226 239 
C99-8-9 200 312 170 172 226 
C99-8-10 198 200 324 342 164 170 226 
C99-8-11 198 332 164 170 226 239 
C99-8-12 198 200 312 170 226 241 
C99-8-13 198 200 312 170 172 239 
C99-8-15 198 312 170 226 239 
C99-8-16 186 198 330 332 164 172 226 
SP99-8-1 198 330 162 226 241 
SP99-8-2 198 200 314 332 164 172 226 
SP99-8-3 194 198 330 170 226 239 
M99-9-1 198 312 170 172 226 239 
M99-9-3 198 312 164 226 241 
M99-9-4 198 200 324 332 172 226 241 
M99-9-5 198 200 320 332 170 172 226 241 
M99-9-6 198 200 312 337 170 172 226 
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C99-9-1 200 320 164 170 226 239 
C99-9-2 198 200 312 334 164 172 226 
C99-9-3 198 200 330 172 226 239 
C99-9-4 186 198 314 332 170 172 226 
C99-9-5 196 198 330 332 164 239 
C99-9-6 198 200 312 170 226 
C99-9-7 198 200 312 164 170 226 
C99-9-8 198 328 172 226 
C99-9-9 198 200 320 330 170 226 239 
C99-9-10 198 200 312 324 162 170 226 
C99-9-11 196 198 312 332 170 172 226 239 
C99-9-12 200 314 324 164 170 226 
C99-9-13 200 206 334 340 164 172 241 
C99-9-14 196 198 312 330 164 239 241 
C99-9-15 198 200 314 328 164 226 239 
C99-9-16 198 312 164 168 226 241 
C99-9-17 186 198 312 330 170 172 226 
C99-9-18 198 312 164 172 239 241 
C99-9-19 198 312 330 164 170 226 239 
C99-9-20 186 198 316 330 164 170 226 
C99-9-21 186 200 312 170 172 239 241 
C99-9-23 186 198 332 164 170 226 
C99-9-24 198 324 170 226 
C99-9-25 198 330 164 226 239 
C99-10-1 196 198 314 334 170 226 
C99-10-2 186 198 312  226 239 
C99-10-3 194 198 312 332 170 172 239 241 
C99-10-5 198 200 312 170 172 226 241 
C99-10-6 198 200 320 330 170 239 
C99-10-7 198 200 312 172 226 
C99-10-8 198 312 324 166 226 
C99-10-9 198 200 312 332 164 172 226 241 
C99-10-10 186 200 312 168 170 226 239 
C99-10-14 198 314 328 170 226 
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APPENDIX C 
 

Allele Frequency Data for the Temporal Change in Allele Frequency Method (MLNE 
program) from Age Class Data.  Bp = base pairs. 
 

1997 Allele Frequency Data 
 

Post-Pelagic (n = 26 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.301 0 0 0 0 0.500 0.192 0 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.654 0.269 0.077 

 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.385 0.039 0 0 0.154 0 0.039 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.039 0.269 0 0.077 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.346 0 0 0.346 0.308 
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Juveniles (n = 62 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.210 0.016 0 0.048 0.016 0.387 0.290 0.032 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0.016 0 0.452 0.403 0.129 

 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.484 0.016 0 0.016 0.097 0 0.048 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.065 0.210 0.048 0.016 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.344 0 0 0.438 0.219  
 
Subadults (n = 36 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.194 0 0.028 0.028 0.028 0.306 0.361 0.056 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0.083 0.556 0.306 0.056 
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Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.528 0 0.028 0 0.111 0 0.028 
 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.111 0.167 0 0.028 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.306 0 0 0.444 0.250  
 

1998 Allele Frequency Data 
 

Post-Pelagic (n = 22 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.273 0.045 0 0 0 0.136 0.545 0 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.455 0.364 0.182 

 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.455 0 0 0 0.091 0 0.091 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.045 0.182 0.136 0 0 0 0 
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Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.273 0.045 0 0.364 0.318 
 
 
Juveniles (n = 36 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.139 0.028 0.028 0 0.028 0.333 0.417 0.028 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.528 0.389 0.083 

 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.563 0 0 0 0.031 0.063 0.094 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0.031 0.031 0.156 0.031 0 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.367 0.133 0 0.300 0.200  
 
Subadults (n = 16 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.125 0.063 0 0 0.063 0.313 0.438 0 
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Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.375 0.438 0.188 

 
 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.625 0.063 0 0 0 0 0.125 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.063 0.125 0 0 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.625 0 0 0.250 0.125  
 

1999 Allele Frequency Data 
 

Post-Pelagic (n = 46 alleles sampled) 
 
 Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.152 0.022 0 0 0.022 0.500 0.304 0 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.652 0.217 0.130 
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Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.478 0.044 0 0 0.022 0 0.065 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.152 0.152 0.065 0 0.022 0 0 
 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0.044 0.261 0.174 0 0.370 0.152 
 
Juveniles (n = 108 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.102 0.037 0 0.028 0.037 0.472 0.315 0.009 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0.019 0.602 0.278 0.102 

 
Cm84 Locus 
 

Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.407 0.074 0 0 0.056 0.009 0.056 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0.037 0.148 0.120 0.074 0 0 0.009 0.009 
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Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0.009 0.302 0.019 0.009 0.443 0.217  
 
Subadults (n = 56 alleles sampled) 
 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.107 0.018 0 0 0 0.500 0.375 0 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.625 0.214 0.161 

 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.446 0 0.018 0 0.125 0 0.107 
 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.071 0.125 0.054 0.036 0 0 0.018 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0.036 0.321 0.054 0.036 0.393 0.161  
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APPENDIX D 
 
Summary of Allele Frequencies for the Temporal Change in Allele Frequency 
Method (MLNE Program) from Cohort Data.  Bp = base pairs. 
 
 
1997 Year of Capture (n = 82 alleles sampled) 
 Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency  0.244 0.012 0 0.037 0.012 0.415 0.256 0.024 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 

Frequency 0.012 0 0.489 0.378 0.122 
 
Cm84 Locus 
 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.439 0.024 0 0.012 0.122 0 0.049 

 
Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0 0.061 0.232 0.037 0.024 0 0 0 

 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.345 0 0 0.405 0.250 
 
1998 Year of Capture (n = 27 alleles sampled) 
Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.172 0.034 0.017 0 0.017 0.276 0.466 0.017 
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Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0 0.500 0.397 0.103 

 
Cm84 Locus 
 

Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.593 0 0 0 0.037 0.037 0.093 
 

Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0.056 0.037 0.130 0.019 0 0 0 0 
 
Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0 0.308 0.096 0 0.346 0.250 
 
1999 Year of Capture (n = 150 alleles sampled) 
 Cc117 Locus 
 

Allele 
(bp) 

186 188 192 194 196 198 200 206 

Frequency 0.107 0.027 0 0.020 0.033 0.480 0.327 0.007 
 
Cm72 Locus 
 
Allele (bp) 216 224 226 239 241 
Frequency 0 0.013 0.640 0.253 0.093 

 
Cm84 Locus 

 
Allele 
(bp) 

312 314 316 318 320 322 324 

Frequency 0.427 0.067 0.007 0 0.047 0.007 0.060 
 

Allele 
(bp) 

328 330 332 334 336 337 340 342 

Frequency 0.027 0.147 0.133 0.053 0 0.007 0.007 0.013 
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Ei8 Locus 
 
Allele (bp) 162 164 166 168 170 172 
Frequency 0.020 0.297 0.054 0.007 0.419 0.203 
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