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Abstract – Fishery independent indices of spawning biomass of Atlantic bluefin tuna in western North Atlantic Ocean
are presented which utilize National Marine Fisheries Service ichthyoplankton survey data collected from 1977 through
2007 in the Gulf of Mexico. Indices were developed using similarly standardized data from which previous indices were
developed (i.e. abundance of larvae with a first daily otolith increment formed per 100 m2 of water sampled with bongo
gear). Indices were also developed for the first time from standardized data collected with neuston gear [i.e. abundance
of 5-mm larvae (i.e. seven-day-old larvae) per 10 minute tow]. Indices of larval abundance were developed using
delta-lognormal models, including following covariates: time of day, time of month, area sampled and year. Due to
the large frequency of zero catches during ichthyoplankton surveys, a zero-inflated delta-lognormal approach was also
used to develop indices. Finally, a multivariate delta-lognormal approach was employed to develop indices of annual
abundance based on both bongo and neuston catches. The results of these approaches were compared with one another
and with other indices of larval abundance previously developed for the Gulf of Mexico. Residual analyses indicated that
abundance indices of Atlantic bluefin tuna larvae were more appropriately developed from bongo-collected data through
the zero-inflated delta-lognormal approach than other data sets and modeling approaches. Also, when modeling bongo-
collected data with the zero-inflated delta-lognormal approach, the index values increased, indicating some correction
for zero-inflation, and their variability decreased as compared to indices developed with the delta-lognormal approach.

Key words: Mathematical models /Multivariate analysis / Fish larvae / Atlantic Ocean

Résumé – Des indices d’abondance, indépendants de la biomasse « féconde » du thon rouge de Atlantique nord-ouest,
sont présentés en utilisant les données ichtyoplanctoniques des campagnes océanographiques américaines (NMFS) col-
lectées dans le golfe du Mexique de 1977 à 2007. Des indices sont développés en utilisant des données standardisées
à partir des indices antérieurs (abondance des larves dont les otolithes présentent une seule zone d’accroissement jour-
nalier, par 100 m2 d’eau échantillonnée avec un filet bongo). Des indices sont aussi développés pour la première fois à
partir de données collectées avec un filet à neuston et standardisées (abondance de larves de 5-mm, âgées de 7 jours) par
trait de 10 minutes. Des indices d’abondance larvaire sont développés en utilisant des distributions delta-log normales,
incluant les covariables suivantes : jour, mois, zone échantillonnée, année. Dû à la fréquence importante de captures
nulles durant ces campagnes d’ichtyoplancton, un ajustement, au moyen d’une distribution delta-log normale pour des
données présentant une grande quantité de valeurs nulles, est aussi utilisé pour développer des indices. Finalement, une
approche delta-log normale multivariée est employée pour développer des indices d’ abondance annuelle, basés sur les
captures aux filets bongo et à neuston. Les résultats sont comparés entre eux et avec des indices d’abondance larvaire du
golfe du Mexique, développés antérieurement. Des analyses des valeurs résiduelles de l’ajustement indiquent que ces
indices d’abondance de larves de thon rouge sont plus appropriés lorsqu’ils sont développés à partir des données lar-
vaires collectées au filet bongo, et suivant une distribution delta-log normale pour des données avec une grande quantité
de valeurs nulles (« zero-inflated ») que ceux résultant d’autres séries de données ou d’autres modèles. Les valeurs des
indices augmentent lorsque les données sont traitées par ce modèle, indiquant quelque correction pour cette inflation de
zéros, et leur variabilité diminue, comparée aux indices développés avec l’ajustement delta-log normal.
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1 Introduction

The objective of fishery-independent surveys is to make
inference about the size (in numbers and/or biomass) and age
structure of targeted populations. Annual abundance indices
based on such surveys are usually derived from catch or catch-
per-unit-effort (CPUE) data and are a vital part of current
management regimes of many fisheries. Collection, analysis
and dissemination of such information are a paramount func-
tion of the National Oceanic and Atmospheric Administration
(NOAA), National Marine Fisheries Service (NMFS).

Fishery managers became concerned of the status of stocks
of Atlantic bluefin tuna, Thunnus thynnus, in the late 1960’s,
and in 1975 the International Commission for the Conser-
vation of Atlantic Tunas (ICCAT) implemented regulations
for management of the western Atlantic stock. Since then,
annually conducted international assessments of western At-
lantic bluefin tuna have indicated a large decline in abundance
(Anonymous 2008). Most abundance indices used during as-
sessments of western Atlantic bluefin tuna were of a fishery-
dependent nature. Scott et al. (1993) presented a spawning
biomass index based upon the abundance of Atlantic bluefin
tuna larvae collected during fishery independent surveys con-
ducted by NMFS in the Gulf of Mexico. Since that time,
this index, which is a series of Pennington (1983) delta–
distribution estimators, has been updated regularly (Scott and
Turner 1994).

Fish larvae in many cases are overdispersed as a result
of the spawning behavior of adults and/or physical oceano-
graphic processes, resulting in catch data which are not nor-
mally distributed. Therefore, samples taken from such overdis-
persed populations contain many small or zero values and few
very large values, and simple estimates of mean abundance
from sample data may either be too low if many low values
are included or too high if very large values are included.
Such zero-inflated CPUE data is prolific in fisheries biology
and becoming more important as fish stocks decline and rare
species become more difficult to detect. Zero-inflation can oc-
cur due to “true zero” observations (e.g. from the study of
rare organisms) or “false zero” observations (e.g. from sam-
pling or observer errors) or both. Martin et al. (2005) reviewed
many recent approaches to model such data for statistical in-
ference with the use of generalized linear models. Data with
zero-inflation due to true zeros can be modeled by two ap-
proaches: two-part modeling (e.g. delta-lognormal method; Lo
et al. 1992) and mixture modeling (e.g. zero-inflated Poisson
[ZIP] or zero-inflated negative binomial [ZINB] [Martin et al.
2005; Minami et al. 2007]); while zero-inflation due to false
zeros can be mitigated by the use of zero-inflated binomial
(ZIB) mixture models (Tyre et al. 2003; Martin et al. 2005;
Steventon et al. 2005). For data with zero-inflation due to both
true and false zeros, Martin et al. (2005) reports that there are
currently no reported models in the literature.

Model-based estimators have been popularized since they
may reduce the likelihood of false conclusions about trends
in abundance (McConnaughey and Conquest 1993). They
may also produce estimators with better precision (Pennington
1983, 1996; Lo et al. 1992). One model-based alternative to the
arithmetic mean of the sample is the delta-lognormal method
(Lo et al. 1992). The index computed by this method is a

mathematical combination of yearly abundance estimates from
two distinct generalized linear models: a binomial (logistic)
model which describes proportion of positive abundance val-
ues (i.e. presence/absence) and a lognormal model which de-
scribes variability in only the nonzero abundance data (Lo
et al. 1992).

However, for many fishery-independent CPUE data sets,
large frequencies of zeros are observed relative to what is
predicted by models based on standard distributional assump-
tions. Recently, in many fields, it has become popular to model
such data using regression models based on an assumption that
the response is generated by a mixture of a standard count dis-
tribution (e.g. binomial, Poisson, or negative binomial) with a
degenerate distribution with point mass of one at zero, creat-
ing a zero-inflated distribution (Hall 2000; Vieira et al. 2000).
As mentioned earlier, Martin et al. (2005) reports that there
are currently no reported models in the literature for data with
zero-inflation due to both true and false zeros, and the use
of mixture models based ZIP or ZINB distributional assump-
tions may not account for “false zeros” when modeling the
data. Therefore, a more appropriate way to model these types
of data would be to replace the binomial model portion of a
delta-lognormal approach with a zero-inflated binomial (ZIB)
model. This would allow one to take into account both “true
zeros” by using a two-part modeling approach (i.e. the delta-
lognormal method), while adjusting for any “false zeros” with
the ZIB modeling approach.

In many surveys, multiple gear-types are used in gather-
ing data. In most cases, CPUE values resulting from differ-
ing gears are neither directly additive nor easily standardized
between gears, making it difficult to model with a traditional
delta-lognormal approach. Therefore, a more appropriate way
to model these types of data would be to replace the binomial
and lognormal submodels of a delta-lognormal approach with
multivariate binomial and multivariate lognormal submodels.

The objective of this paper is to present abundance indices
of bongo- and neuston-collected Atlantic bluefin tuna larvae
based on delta-lognormal (DL), zero-inflated delta-lognormal
(ZIDL), and multivariate delta-lognormal (MDL) models. The
indices resulting from these methods will be compared to
an index developed using the Pennington delta-distribution
(PDD) method as employed in the development of previous
larval bluefin tuna indices (Scott et al. 1993; Scott and Turner
1994).

2 Methodology

Methodologies concerning general ichthyoplankton sur-
veys conducted by NMFS in the Gulf of Mexico have been
extensively reviewed (Richards and Potthoff 1980; McGowan
and Richards 1986). Likewise, methodologies concerning the
use of this survey data to assess bluefin tuna larvae were re-
viewed (Richards 1990; Murphy 1990). Ichthyoplankton sur-
veys were conducted from numerous NOAA vessels during
mid to late April through May from 1977 through 2007 in the
offshore waters of the US Gulf of Mexico. Sampling station
locations were usually located on a 30-nautical-mile grid. A
double oblique plankton tow was conducted at every station
through 1983 and at every other station from 1984 through
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2007. Each tow was conducted to 200 m or to within 1–5 m
of the bottom if the water depth is less than 200 m and was
made using a paired 61-cm bongo net plankton sampler with
a 0.333 mm mesh. Ship speed during the tow was maintained
at approximately 1.5 knots to maintain a 45◦ wire angle on
the deployment cable. A flow meter inside the mouth of each
bongo net was used to determine the volume of water sam-
pled. In addition to the bongo tow, a neuston net tow was made
at each station. This was a surface tow taken at a speed of
1.5 knots for 10 minutes duration. The net was fished from the
side of the vessel, outside of the vessel’s wake, and the cable
paid out was adjusted to insure the net fished the top 0.5 m of
the water. The frame of the net was a 1 by 2 m m rectangle,
and the mesh was 0.947 mm.

Identifications and measurements (to the nearest 0.1 mm
body length) of bongo-collected larvae by the Polish Plank-
ton Sorting and Identification Center in Szczecin, Poland were
verified for all survey years except 2007. Data from 2007 were
included in the analyses, but were considered provisional. The
methodologies of Scott et al. (1993) and Scott and Turner
(1994) were used to standardize larval data. The mean number
of larvae per 100 m2 at first daily otolith increment formation
for each station sampled between April 20 and May 31 each
year of the time series (1977-2007) were estimated and used
to index abundance. The calculation of the number of larvae
per 100 m2 resulted from the need to incorporate the depth
over which each volumetrically-sampled bongo tow was inte-
grated [i.e. the number of larvae per volume (m3) multiplied
by sampled the depth (m)]. The indices were estimated as

Is,y =

k∑
i=1

RDe−Z(Ds,y,i−1)

As,y
(1)

where y indexes year, s indexes sampling station, i(= 1, ..., n)
indexes individual larvae, A the surface area sampled, Z the lar-
val daily loss rate, D the larval daily ring count, and R the gear
efficiency estimate applied. Estimates were constructed using
the preferred method as described in Scott et al. (1993) and
Scott and Turner (1994), which adjusts the density estimates
of each of the sampling stations for estimated larval loss rates
and gear efficiency. With these station- and year-specific esti-
mates of larval catch, Scott et al. (1993) and Scott and Turner
(1994) then used the delta–distribution method of Pennington
(1983) to develop unbiased estimates of average annual larval
density (and variability), taken to be the annual index value
(and variability).

Identifications and measurements (to the nearest 0.1 mm
body length) of neuston-collected larvae by the Polish Plank-
ton Sorting and Identification Center in Szczecin, Poland were
also verified for all survey years except 1987, 1988, 2006 and
2007. Specimens from 1987 and 1988 were not measured and
currently the location of these specimens is unknown due to
damage incurred during Hurricane Katrina. If those samples
cannot be recovered in the future this will permanently rep-
resent a data hole in the time series. Data from 2006 and
2007 were included in the analyses, but were considered pro-
visional. Both length-frequency and age-frequency histograms
were evaluated to determine an appropriate standardization ap-
proach for neuston-collected data. The standardized number

per 10-minute neuston tow for each station sampled between
April 20 and May 31 each year of the time series (1982-2007)
was estimated and used to index abundance.

Unbiased estimators of the mean and variance of the PDD
method (Pennington 1983) are presented as
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respectively, where ny is the number of observations, my is the
number of nonzero values, Ty and s2

y are the sample mean and
sample variance, respectively, of the log of the nonzero val-
ues, x1 denotes the single untransformed value when my equals
one, and
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This PDD method (Pennington 1983) was used to further up-
date the bongo index for continuity and to develop a new
neuston index. This was done to make comparisons between
the indices developed from the PDD method and those devel-
oped from DL models.

The DL index of relative abundance (Iy) as described by
Lo et al. (1992) was estimated as

Iy = cypy, (5)

where cy is the estimate of mean CPUE for positive catches
only for year y; py is the estimate of mean probability of oc-
currence during year y. Both cy and py were estimated us-
ing generalized linear models. Data used to estimate abun-
dance for positive catches (c) and probability of occurrence
(p) were assumed to have a lognormal distribution and a bino-
mial distribution, respectively, and modeled using the follow-
ing equations:

ln (c) = Xβ + ε (6)

and

p =
eXβ+ε

1 + eXβ+ε
, respectively, (7)

where c is a vector of the positive catch data, p is a vector of the
presence/absence data, X is the design matrix for main effects,
β is the parameter vector for main effects, and ε is a vector of
independent normally distributed errors with expectation zero
and variance σ2.
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We used the GLIMMIX and MIXED procedures in SAS
(v. 9.1, 2004) to develop the binomial and lognormal submod-
els, respectively, to develop annual DL indices for both bongo-
and neuston-collected larvae. Similar covariates were included
in both submodels: time of day (two categories: night, 6:00 PM
to 6:00 AM, local time; day, 6:00 AM to 6:00 PM, local time),
survey date category (four categories: late April, April 20 to
April 30; early May, May 1 to May 10; middle May, May 11
to May 20; late May, May 21 to May 31), survey area [orig-
inal survey area as defined by Scott et al. (1993) divided into
three categories: eastern survey area (survey area between 84◦
and 86◦ longitude); central survey area (survey area between
86◦ and 91◦ longitude); western survey area (survey area be-
tween 91◦ and 94◦ longitude)] and year. If any variables were
not found to be at least marginally significant (i.e. at α = 0.10)
based on type 3 analysis, then those variables were removed.
Type 3 tests are hypothesis tests for the significance of each
of the fixed effects to be considered for inclusion in the model
(null hypothesis: the change in model likelihood resulting from
the inclusion of the effect is zero). The significance of includ-
ing each effect is evaluated given that all the other effects to
be considered are already in the model. The fit of each of the
submodels was evaluated using residual analyses, which were
accomplished by plotting the residuals by year and by develop-
ing a QQ plot of the residuals assuming a normal distribution.
Also, a Wilcoxon signed rank test was conducted to test the
null hypothesis that the mean of the residuals is zero, assum-
ing that the distribution is symmetric (Lehmann 1998). The
performance of the binomial submodel was evaluated with the
AUC [i.e. the Area Under the receiver operating characteris-
tic (ROC) Curve] methodology presented by Steventon et al.
(2005). The ROC curve is used to assess the fit or predic-
tive accuracy of dichotomous models (McPherson et al. 2004;
Boyce et al. 2002). The AUC statistic is developed from the
ROC curve, and is both a robust measure of model perfor-
mance and relatively insensitive to prevalence (proportion of
0 or 1). The AUC statistic does not require the choice of an ar-
bitrary prediction probability threshold defining “presence” vs.
“absence,” but rather it summarizes model performance across
the range of possible thresholds (Cumming 2000).

Then, ln(cy) and py were estimated as least-squares means
for each year along with their corresponding standard er-
rors, SE(cy) and SE(py), respectively. Before, calculation of
Iy, the estimates of ln(cy), on the natural log-scale are back-
transformed to those on the original (normal) data scale, cy,
using a bias correction as detailed by Lo et al. (1992). From
these estimates, Iy was calculated, as in Equation (5), and its
variance calculated as

V
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Iy
)
≈ V

(
cy

)
p2
y + c2

yV
(
py

)
+ 2cypyCov (c, p) , (8)

where
Cov (c, p) ≈ ρc,p

[
SE

(
cy

)
SE

(
py

)]
, (9)

and ρc,p denotes correlation of c and p among years.
In order to develop the ZIDL model to estimate annual in-

dices of abundance for both bongo- and neuston-collected lar-
vae, we replaced the regular binomial portion of the DL model
with a ZIB model that takes into account the high proportion
of zeros in the abundance data. The ZIB model treats the prob-
ability of observing a bluefin tuna larva as a product of the true

probability of the site being occupied (o), and the probability
of detection (d) when in fact the site is occupied at the time
the sample is taken (Tyre et al. 2003; Steventon et al. 2005).
Multiple samples must be taken at each site in order to esti-
mate d, but the number of samples per site (m) does not have
to be equal (Tyre et al. 2003). The number of occurrences of
an animal for each site over m samples is denoted as x, and the
number of sites sampled as n (Steventon et al. 2005).

In the case of this study, a year was treated as a site, since
the goal was to develop annual indices of abundance. There-
fore, when we considered one year after m samples have been
taken (i.e., m bongo stations completed), the probability of
observing zero bluefin tuna larvae was

P (x = 0) = o (1 − d)m + (1 − o) (1) (10)

and the probability of observing exactly x bluefin tuna larvae,
where x is greater than zero was

P (x > 0) = o

(
m
x

)
dx (1 − d)m−x + (1 − o) (0) (11)

after Tyre et al. (2003) and Steventon et al. (2005). We then
combined these two probabilities to form the likelihood func-
tion for a single year y:

L (o, d|x,m) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
o (1 − d)m + (1 − o) , x = 0

o

(
m
x

)
dx (1 − d)m−x , x > 0 (12)

following the methods of Tyre et al. (2003).
Steventon et al. (2005) expressed the above probability in

Equation (12) as a generalized Bernoulli distribution, allowing
the combination of multiple years into a full likelihood:

L
(
o, d|

{
xy,my, uy

})
=

n∏
y=1

[
o (1 − d)my + (1 − o)

]uy

×
[
o

(
my
xy

)
dxy (1 − d)my−yy

]1−uy

(13)

where uy is an indicator variable: uy = 1 when xy = 0 and
uy = 0 when xy > 0. The values of o and d are not required to
be constant, and are usually not over time. These values can be
influenced by covariates as follows:

o =
eXβ+ε

1 + eXβ+ε
(14)

and

d =
eXβ+ε

1 + eXβ+ε
, (15)

where o and d are vectors of probability of occupancy and
probability of detection, respectively, X is the design matrix
for main effects, β is the parameter vector for main effects, and
ε is a vector of independent normally distributed errors with
expectation zero and variance σ2. Certain covariates may be
common between both the above models, while others may be
completely different (Steventon et al. 2005).
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Therefore, in the case of this study, the estimated proba-
bility of collecting a bluefin tuna larva during a single ichthy-
oplankton station is

pZ1,y = o × d (16)

and the probability of collecting at least one bluefin tuna larva
after m ichthyoplankton stations is

pZ,y = o
[
1 − (1 − d)m]

, (17)

following the methods of Steventon et al. (2005). We then re-
place py in Equations (5), (8) and (9) with pZ,y from Equa-
tion (17) to estimate annual indices of abundance and their
corresponding variance using this new zero-inflated approach
[IZ,y and V(IZ,y), respectively].

The NLMIXED procedure in SAS (v. 9.1, 2004) was em-
ployed to model the ZIB model. Initial SAS code for this pro-
cedure was provided by Steventon et al. (2005). We modified
this code in order to use dummy variables, which were needed
to include categorical variables in the model. The variables
used in the model were the same as those used in the bino-
mial submodel of the DL model. However, the time of day
variable was placed in the detection submodel, while the other
variables were placed in the occurrence submodel (see Equa-
tions (14) and (15)) contained in the ZIB submodel. Submodel
performance was evaluated using AUC (Area Under Curve)
methodology (Steventon et al. 2005) and residual analyses, as
described above.

In order to develop MDL indices of abundance CPUE data
collected with differing gears, we replaced each submodel with
its multivariate counterpart. The binomial submodel was re-
placed with a multivariate binomial logit-normal model as de-
scribed by Coull and Agresti (2000). This approach models
vectors Y = (Y1, Y2,. . . , YR) of binomial-type responses, by in-
corporating a separate random effect for each of the R binomial
responses, such that logit(πs) is a multivariate normal random
variable. Specifically,

logit (πs) = αs + Xsβ, (18)

where πs is a vector of multivariate probabilities of occurrence,
s = 1, ... , N represents subject (for this study we treated time
of day as the subject), Xs is the R × p covariate matrix whose
rth row is xsr and αs ∼ N(0, Σ) (where xsr is a fixed covariate
row vector and αs are i.i.d. random variables). The parameters
β describe the effects of the explanatory variables, while Σ con-
tains parameters that reflect the heterogeneity among subjects
as well as within-subject dependencies among the R variables.
In order to estimate the index values based on the underlying
common effect between both gears the following equation was
used:

pMV,y =
eXsβy

1 + eXsβy
, (19)

where pMV,y is the probability of occurrence based on the un-
derlying common effects between both gears (βy) evaluated for
year y. Likewise, the lognormal submodel was replaced with a
multivariate lognormal model with similar parameter structure
as previously described for the multivariate binomial model in
Equation (18):

log(cs) = αs + Xβs (20)

where cs is a vector of multivariate non-zero catch rates. Sim-
ilarly, to estimate the index values based on the underlying
common effect between both gears the following equation was
used:

cMV,y = eXsβy , (21)

where cMV,y is the estimate of mean CPUE for positive catches
only based on the underlying common effects between both
gears (βy) evaluated for year y. Finally, the IMV,y is estimated
as in Equation (5):

IMV,y = cMV,ypMV,y (22)

and its variance calculated as in Equations (8) and (9). The
NLMIXED procedure in SAS (v. 9.1, 2004) was employed to
model the multivariate submodels of this approach. The vari-
ables included in the model were the same as above for the
DL model with the addition of three covariance parameters to
describe any covariance between the neuston and bongo catch
at each station. Submodel performance was evaluated using
AUC (area under curve) methodology (Steventon et al. 2005)
and residual analyses, as described above.

In order to calculate upper and lower 95% confidence lim-
its (UCL and LCL) for Iy, IZ,y, and IMV,y, the following equa-
tions were used:

UCL = (I × C) and LCL = (I/C), (23)

where I is the index value,

C = e

(
2
√

ln(1+CV2)
)
, (24)

and CV is the coefficient of variation of the mean index value.
Typically, a CV is calculated as standard deviation/mean, and
not standard error/mean. This is because CV is usually a mea-
sure of the variability of the data. However, here CV was used
as a measure of the precision of the mean (i.e. CV = standard
error of the index value/index value). Index values and corre-
sponding CVs and confidence limits were compared on a year
by year basis to determine if there were any changes in annual
index values developed with the DL and ZIDL approaches for
both bongo- and neuston-collected data. Also, the average per-
cent change in both the index values and the CVs over the time
series developed with the DL and ZIDL approaches were cal-
culated for both bongo- and neuston-collected data.

3 Results

A preliminary analysis of the data collected in bongo and
neuston tows indicated that for most survey years, data can be
used from late April through the entire month of May. How-
ever, there were several years where surveys were started late
or ended early due to mechanical, meteorological and/or other
logistical factors. For bongos, the number of stations sampled
during the April 20 through May 31 time period ranged from
20 to 97 (Table 1), while the number of neuston tows ranged
from 66 to 175 (Table 1). The number of specimens collected
in bongo tows per year ranged from 7 to 221, and ranged in
length from 1.3 to 10.7 mm (Appendix online-only, Table A1);
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Table 1. The total number of samples included in analyses per year,
the number of samples containing larvae per year, and the nominal
frequency of occurrence per year are represented by n, m, and f ,
respectively, for both bongo- and neuston-collected larvae.

Bongo Neuston
Survey
Year n m f n m f
1977 20 8 0.40 0 . .
1978 69 33 0.48 0 . .
1979 0 . . 0 . .
1980 0 . . 0 . .
1981 35 6 0.17 0 . .
1982 97 20 0.21 98 32 0.33
1983 93 16 0.17 92 12 0.12
1984 71 6 0.09 70 1 0.01
1985 0 . . 0 . .
1986 72 7 0.10 72 9 0.13
1987 78 5 0.06 0 . .
1988 77 15 0.20 0 . .
1989 85 14 0.17 143 29 0.2
1990 86 10 0.12 147 11 0.08
1991 69 5 0.07 145 12 0.08
1992 83 14 0.17 145 9 0.06
1993 83 6 0.07 144 11 0.08
1994 84 12 0.14 132 9 0.07
1995 97 8 0.08 175 13 0.07
1996 79 10 0.13 142 9 0.06
1997 74 11 0.15 131 5 0.04
1998 59 5 0.09 117 15 0.13
1999 71 8 0.11 136 9 0.07
2000 74 7 0.10 144 13 0.09
2001 71 11 0.16 133 18 0.14
2002 71 4 0.06 123 6 0.05
2003 38 10 0.26 72 8 0.11
2004 32 6 0.19 66 6 0.09
2005 74 13 0.17 143 8 0.06
2006 75 16 0.21 126 18 0.14
2007 48 10 0.21 79 9 0.11

and the number collected in neuston tows per year ranged from
2 to 174, and ranged in length from 2.5 to 10.5 mm (Appendix
online, Table A2).

Both age- and length-frequency histograms of neuston-
collected larvae were analyzed to determine the appropriate
standardization approach (Fig. 1). Figure 1a depicts the age-
frequency histogram of neuston-collected larvae. The daily age
of each larva was derived from body length (BL) using the age-
length key provided by Scott et al. (1993). This histogram in-
dicated that a larval daily loss rate (Z) could not be developed
from the age-frequency data. However, the length-frequency
histogram of larval body lengths (Fig. 1b) indicated the larvae
were fully recruited by 5 mm, approximately at 7 days old (i.e.
7.69 days old). Therefore, a per-millimeter loss rate of 0.8285
was derived through a nonlinear regression of the descending
upper limb of the length-frequency histogram (Fig. 1b),

NBL = 40015.3e(−0.8285.BL), (25)

where NBL is the number of larvae per 0.5 mm size (i.e. BL)
bin. This regression was used to standardize the larval data
to number of 5 mm larvae per 10-minute neuston tow. With
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Fig. 1. Age frequency (a) and length frequency (b) distributions of
Atlantic bluefin tuna larvae collected in neuston tows (N = 2270 lar-
val lengths transformed to age). Age data was summarized in 1-day
age classes (bins). Length data was summarized in 1-mm size classes.
Figure (b) illustrates the nonlinear regression by which the standard-
ization factor was calculated.

this approach, the inclusion of larvae over 9 mm body length,
which was a rare event, resulted in extremely large catches,
and were deemed unrealistic. Therefore, larvae over 9 mm and
under 5 mm were excluded from further analyses.

The results of type 3 analyses for both submodels used to
develop the DL model for bongo-collected larvae are summa-
rized in Table 2. For the binomial submodel all variables were
significant (i.e. at α = 0.05). For the lognormal submodel, all
variables were significant (i.e. at α = 0.05) except survey area,
which was marginally significant (i.e. at α = 0.10). The bino-
mial submodel had an AUC = 0.736. This means that in 74
out of 100 instances, a station selected at random from those
with larvae had a higher predicted probability of larvae being
present than a station randomly selected from those that had no
larvae. Residual analyses indicated the mean of the residuals
from the binomial submodel differed significantly from zero
(Wilcoxon signed rank test: S = −6740, p-value = 0.0072).
Residual analyses indicated that the residuals from the bino-
mial submodel differ slightly from a normal distribution, with
herding of negative residuals near zero (Fig. 2a) and the slight
departure of the residuals from the theoretical normal refer-
ence line in Fig. 2b. Residual analyses indicated the mean of
the residuals of the lognormal submodel did not differ signif-
icantly from zero (Wilcoxon signed rank test: S = −1181,
p-value = 0.4239), and that the residuals were approximately
normally distributed (Fig. 2c,d).
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Table 2. Type 3 tests of delta-lognormal model parameters for data collected in bongo tows. Num DF: numerator degrees of freedom; Den DF:
denominator degrees of freedom.

Type 3 Tests of Fixed Effects for the Binomial Submodel
Effect Num DF Den DF χ2 F Value Pr > χ2 Pr > F
Year 27 585 82.18 2.96 <0.0001 <0.0001

Survey date 3 1423 52.75 17.58 <0.0001 <0.0001
Survey area 2 1514 35.29 17.64 <0.0001 <0.0001
Time of day 1 1596 13.38 13.38 0.0003 0.0003

Type 3 Tests of Fixed Effects for the Lognormal Submodel
Effect Num DF Den DF F Value Pr > F
Year 27 262 3.90 < 0.0001

Survey date 3 262 3.82 0.0105
Survey area 2 262 2.35 0.0972
Time of day 1 262 5.69 0.0178
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Fig. 2. Residual plots of the submodels developed from data collected during bongo tows using both the delta-lognormal (DL) approach and the
zero-inflated delta-lognormal (ZIDL) approach; (a and b) represent plots of residuals by year and a QQ plot of residuals, respectively, for the
binomial submodel for the DL approach; (c and d) represent plots of residuals by year and a QQ plot of residuals, respectively, for the lognormal
submodel for both the DL and ZIDL approaches; (e and f) represent plots of residuals by year and a QQ plot of residuals, respectively, for the
zero-inflated binomial submodel for the ZIDL approach.

The same variables that were retained in the model-
building process of the binomial submodel for the develop-
ment of Iy for bongo-collected larvae were used in the ZIB
model: time of day, survey date category, survey area, and year
(Appendix online, Table A3). All the variables except time of
day were used in the occupancy submodel while only the time
of day was used in the detection submodel for the ZIB model.
The time of day variable was used in the detection submodel

as we reasoned that time of day (i.e. day or night) has an ef-
fect on the probability of detecting larvae (net avoidance). The
ZIB submodel had an AUC = 0.727. This means that in 73
out of 100 instances, a station selected at random from those
with larvae had a higher predicted probability of larvae being
present than a station randomly selected from those that had
no larvae. Residual analyses indicated the mean of the residu-
als of the ZIB submodel did not differ significantly from zero
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Fig. 3. Abundance indices of larval bluefin tuna (number under
100 m2 of sea surface) collected in bongo tows developed from the
Pennington delta-distribution method (PDD; �), the delta-lognormal
model (DL; �) and zero-inflated delta-lognormal model (ZIDL; �);
(a): annual abundance indices derived from each approach; (b): coef-
ficients of variation of the index values in graph (a); (c) represents a
detailed look at the DL and ZIDL index values from 1997 to 2007.

(Wilcoxon signed rank test: S = −34374.5, p-value = 0.1695),
and that the residuals were approximately normally distributed
(Fig. 2e,f). Figure 3 summarizes the indices of larval bluefin
tuna (number under 100 m2 of sea surface) collected in bongo
tows developed from the PDD method, the DL model and
ZIDL model. Figure 3a shows a large decrease in the index
values derived from all methods from the late 1970s to the mid
1980s.

The results of type 3 analyses for both submodels used to
develop the DL model for neuston-collected larvae are sum-
marized in Table 3. For the binomial submodel all variables
were highly significant (i.e. at α = 0.0001). For the lognor-
mal submodel, the survey date category and survey area vari-
ables were not significant (i.e. at α = 0.05), and were dropped
from the model. The binomial submodel had an AUC =
0.744. Therefore, in 74 out of 100 instances, a station se-
lected at random from those with larvae had a higher predicted

probability of larvae being present than a station randomly se-
lected from those that had no larvae. Residual analyses indi-
cated the mean of the residuals from the binomial submodel
differed significantly from zero (Wilcoxon signed rank test:
S = −5635, p-value = 0.0071). Residual analyses indicated
that the residuals from the binomial submodel differ slightly
from a normal distribution, with herding of negative residu-
als near zero (Fig. 4a) and the slight departure of the residuals
from the theoretical normal reference line in Fig. 4b. Resid-
ual analyses indicated the mean of the residuals of the lognor-
mal submodel did not differ significantly from zero (Wilcoxon
signed rank test: S = −1062, p-value = 0.4119), and that the
residuals were approximately normally distributed (Fig. 4c,d).

Likewise, the same variables that were retained in the
model-building process of the binomial submodel for the de-
velopment of Iy for neuston-collected larvae were used in the
ZIB model: time of day, survey date category, survey area, and
year (Appendix online, Table A4). Again, all the variables ex-
cept time of day were used in the occupancy submodel while
only the time of day was used in the detection submodel for
the ZIB model. The time of day variable was used in the de-
tection submodel as we reasoned that time of day (i.e. day or
night) has an effect on the probability of detecting larvae with
the neuston gear (net avoidance and diel vertical migration).
The ZIB submodel had an AUC = 0.750. Residual analy-
ses indicated the mean of the residuals of the ZIB submodel
differed significantly from zero (Wilcoxon signed rank test:
S = −112135.5, p-value = 0.0170), and that the residuals
tended to herd around certain values (Fig. 4e,f). Likewise, Fig-
ure 5 summarizes indices of larval bluefin tuna (number per
10-minute tow) collected in neuston tows developed from the
PDD method, the DL model and ZIDL model. Figure 5a indi-
cates high interannual variability in the index values regardless
of developmental method.

Annual indices of abundance developed from the ZIDL
approach were higher than those developed from the DL ap-
proach. For indices based on bongo-collected data, there was
an average increase of 6% in the index values and a 3% de-
crease in corresponding CVs (Fig. 3b). For indices based on
neuston-collected data, there was an average increase of 8%
in the index values and 0.2% decrease in corresponding CV
(Fig. 5c). However, for both bongo- and neuston-collected
data, index values were not significantly different between the
ZIDL approach and the DL approach, based on the overlap
of corresponding confidence intervals (Appendix online, Ta-
bles A5 and A6).

The parameters developed for the MDL approach were
similar to those of the DL approach and included parame-
ters for time of day, survey date category, survey area, and
year. Also, three covariance parameters were developed to take
into account the covariance between bongo and neuston catch
rates (Appendix online, Table A7). Residual analyses indi-
cated the mean of the residuals from the binomial submodel
differed significantly from zero (Wilcoxon signed rank test:
S = −30097.5, p-value< 0.0001). Residual analyses indicated
that the residuals from the multivariate binomial submodel dif-
fer slightly from a normal distribution, with herding of nega-
tive residuals near zero (Fig. 6a) and the slight departure of the
residuals from the theoretical normal reference line in Fig. 6b.
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Table 3. Type-3 tests of delta-lognormal model parameters for data collected in neuston tows. Num DF: numerator degrees of freedom; Den
DF: denominator degrees of freedom.

Type 3 Tests of Fixed Effects for the Binomial Submodel
Effect Num DF Den DF χ2 F Value Pr > χ2 Pr > F

Year 22 909 97.79 4.38 < .0001 < 0.0001
Survey date 3 1923 61.78 20.59 < .0001 < 0.0001
Survey area 2 2230 39.10 19.55 < .0001 < 0.0001
Time of day 1 2326 19.31 19.31 < .0001 < 0.0001

Type 3 Tests of Fixed Effects for the Lognormal Submodel: Run 1
Effect Num DF Den DF F Value Pr > F
Year 22 242 2.43 0.0005

Survey date 3 242 0.88 0.4507
Survey area 2 242 0.47 0.6263
Time of day 1 242 2.96 0.0868

Type 3 Tests of Fixed Effects for the Lognormal Submodel: Run 2
Effect Num DF Den DF F Value Pr > F
Year 22 247 2.54 0.0003

Time of day 1 247 3.81 0.0522

Year
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Fig. 4. Residual plots of the submodels developed from data collected during neuston tows using both the delta-lognormal (DL) approach and
the zero-inflated delta-lognormal (ZIDL) approach; (a and b) represent plots of residuals by year and a QQ plot of residuals, respectively, for the
binomial submodel for the DL approach; (c and d) represent plots of residuals by year and a QQ plot of residuals, respectively, for the lognormal
submodel for both the DL and ZIDL approaches; (e and f) represent plots of residuals by year and a QQ plot of residuals, respectively, for the
zero-inflated binomial submodel for the ZIDL approach.
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Fig. 5. Abundance indices of larval bluefin tuna (number per
10-minute tow) collected in neuston tows developed from the Pen-
nington delta-distribution method (PDD; �), the delta-lognormal
model (DL; �) and zero-inflated delta-lognormal model (ZIDL; �);
(a): annual abundance indices derived from each approach; (b): coef-
ficients of variation of the index values in graph (a); (c) represents a
detailed look at the DL and ZIDL index values from 1990 to 2000.

Residual analyses indicated the mean of the residuals of the
multivariate lognormal submodel did not differ significantly
from zero (Wilcoxon signed rank test: S = −429.5, p-value =
0.4903), and that the residuals were approximately normally
distributed (Fig. 6c,d). Figure 7 summarizes indices of larval
bluefin tuna collected in bongo and neuston tows developed
with the MDL approach (Appendix online, Table A8).

4 Discussion

For larval bluefin tuna collected in bongo tows, all indices
and corresponding CVs were similar when comparing years
between the PDD, DL and ZIDL approaches (Fig. 3). Index
values were highest in the early years of the survey and much
lower in recent years, and in the 1998 and 2005 survey years

the index values developed via the DL and ZIDL approaches
were the lowest of the entire time series. Residual analyses in-
dicated that, while the residuals of the lognormal submodel,
used identically in both the DL and the ZIDL model develop-
ment, were approximately normally distributed, residuals of
the binomial submodel for the DL approach were not, and
those of the ZIB submodel for the ZIDL approach were ap-
proximately normally distributed (Fig. 2). Also, since the AUC
values indicated essentially identical model performance for
the binomial and ZIB submodels, we reason that the ZIDL
modeling approach is most appropriate for the bongo-collected
data.

The per-millimeter loss rate of 0.8285 was developed by
assuming that the larvae were completely recruited by 5 mm
body length and used to standardize the number of larvae col-
lected in neuston tows. This resulted in more realistic standard-
ized catch values than the extreme values resulting from an as-
sumption of a larger body size at full recruitment. For larval
bluefin tuna collected in neuston tows, all indices were fairly
similar when comparing years between the DL and ZIDL ap-
proaches, with the exception of survey years 1998 and 2003
where the DL and ZIDL modeled indices were lower than
those developed using the PDD method. However, all ap-
proaches produced very similar patterns of abundance. Resid-
ual analyses indicated that, while the residuals of the lognor-
mal submodel, used identically in both the DL and the ZIDL
model development, were approximately normally distributed,
residuals of the binomial submodel for the DL approach and
those of the ZIB submodel for the ZIDL approach were not.
Therefore, although the AUC values indicated essentially iden-
tical model performance for the binomial and ZIB submodels,
residual analysis indicated that neither the DL nor the ZIDL
approach was appropriate for the neuston-collected data.

Corresponding CVs of the annual index values were simi-
lar between different modeling approaches, while those of the
PDD method were smaller. When compared to indices de-
veloped for bongo-collected larvae, index values were simi-
larly high in the early years of the survey, except for survey
year 1984, and much lower in recent years, except for survey
years 1998 and 2003. Also, indices of neuston-collected larvae
were much more variable between years than those of bongo-
collected larvae.

A modeling approach to develop abundance indices is rec-
ommended over the PDD method. Modeling allows for stan-
dardization of yearly catch estimates for those years where
sampling methodology differed slightly from standard tech-
niques. For example, in survey years 2003 and 2004, the
survey did not begin until mid-May, which resulted in a
Pennington estimator (IΔ,y) for bongo-collected larvae that was
biased high for each of those years, since spawning of bluefin
in the Gulf of Mexico usually peaks in mid- to late-May
(Rooker 2007). Modeled indices (Iy, IZ,y) for these two years
were estimated to be lower as a result of the significant effect
of the survey date categorical variable.

This is a first step in modeling zero-inflated data, while
taking into account both “true zeros” (i.e. with the DL por-
tion of the ZIDL approach) and “false zeros” (i.e. with the re-
placement of the binomial submodel with a ZIB submodel).
For both bongo- and neuston-collected larvae, time of day was
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Fig. 6. Residual plots of the submodels developed from data collected during both bongo and neuston tows using multivariate delta-lognormal
(MDL) approach. Graphs (a) and (b) represent plots of residuals by year and a QQ plot of residuals, respectively, for the multivariate binomial
submodel for the MDL approach. Graphs (c) and (d) represent plots of residuals by year and a QQ plot of residuals, respectively, for the
lognormal submodel for the MDL approach.
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Fig. 7. Relative abundance indices of larval bluefin tuna collected in
both bongo and neuston tows developed from the multivariate delta-
lognormal model (MDL; �) and corresponding coefficients of varia-
tion (CV; �).

a significant variable that was included in the various mod-
els. When time of day was included in the detection submodel
of the ZIB model, some correction for lack of detection was
provided. In fact, 96% of ZIDL index values based on bongo
catch rates and 96% of ZIDL index values based on neuston
catch rates were slightly higher than those derived from the
DL approach (i.e. 6% and 8% increase, respectively, but not
significantly higher) when compared annually.

Further development is needed in generalizing this ap-
proach to take into account complex covariance patterns not
presented herein. For example, based on equations 10 to 17,
it is assumed that the detection of each larva is independent.
We know that larvae, especially bluefin tuna larvae, tend to be

patchy (Richards and Potthoff 1980; McGowan and Richards
1986) in their distribution and hence spatially autocorrelated.
Therefore, it would of benefit for future studies in model de-
velopment to include generalization of the model presented
here by incorporating spatial autocorrelation in the modeling
process.

Similar to the univariate indices discussed above, annual
index values derived with the MDL approach are higher dur-
ing the early years of the time series and lower in later years.
While the MDL approach is a novel approach by which to gain
inference on abundance trends simultaneously from multiple
gears, there was a decrease in precision (i.e. increase in CVs)
in the resulting index values, which one would expect unless
the correlation between the catch rates of the two gears was
perfect (i.e. r = 1 or –1). Therefore, the MDL approach would
be most appropriately employed when the joint index values
themselves are deemed more important than their correspond-
ing CVs (e.g. when indices used in stock assessment models
are not inversely weighted on CV). Residual analyses indi-
cated that, while the residuals of the multivariate lognormal
submodel were approximately normally distributed, residuals
of the multivariate binomial submodel for the MDL approach
were not, which may indicate that the distributional assump-
tions of the multivariate binomial submodel were not fully met
and further investigation is needed into the MDL approach.

The relatively high variance (i.e. high CV) in index val-
ues developed by the various modeling methods described
above could be a result of the lack of explanatory variables
and not just zero-inflation. However, there was a slight aver-
age decrease in CV values for index values of both bongo-
and neuston collected data, between the DL approach and
the ZIDL approach, which may indicate a slight increase in
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precision when applying the ZIDL approach. Environmental
information at individual sampling stations, such as water tem-
perature, salinity, dissolved oxygen concentration, etc. could
explain much of the variability in catch rates; such informa-
tion is currently undergoing scrutiny, and will be included in
the development of future abundance indices. Also, research
is currently being conducted concerning the characterization
of larval bluefin tuna habitat based on the analysis of satellite
imagery. Findings of this study will be incorporated into the
modeling approaches described herein, in order to reduce the
variance in annual abundance indices.

Due to the large frequency of zeros in the data, espe-
cially in later years, ZIDL index values derived from bongo
catch rates were selected as most representative of spawn-
ing stock biomass in the U.S. Gulf of Mexico and used in
the final stock assessment model during the 2008 Atlantic
Bluefin Tuna Stock Assessment Session (Anonymous 2008).
This decision also resulted from the fact that the index devel-
oped from bongo catch rates was based upon the abundance
of one-day-old larvae, assumed to be more indicative of egg
abundance and therefore spawning stock biomass, instead of
seven-day-old larval abundances, as in the neuston data. More-
over, residual analyses indicated that abundance indices of At-
lantic bluefin tuna larvae in the Gulf of Mexico were more ap-
propriately developed from bongo-collected data through the
ZIDL approach than other data sets and modeling approaches.
Also, when modeling bongo-collected data with the ZIDL ap-
proach, the index values increased, indicating some correction
for zero-inflation, and their variability decreased as compared
to indices developed with the DL approach. Finally, for ZIDL
index values derived from bongo catch rates, there is an ob-
vious decrease in catch rates of Atlantic bluefin tuna larvae,
which likely indicate a decline in the spawning stock biomass
in the US Gulf of Mexico. Such declines have been a concern
during several of the Atlantic Bluefin Tuna Stock Assessment
conducted by the International Commission for the Conserva-
tion of Atlantic Tunas (ICCAT; Anonymous 2008).

Supporting information

Table A1. Summary of bongo data used in these analyses.

Table A2. Summary of neuston data used in these analyses.

Table A3. Parameters of the zero-inflated binomial model for
bongo tows. The prefix o denotes those parameters in the occu-
pancy submodel, while the prefix d denotes those parameters
in the detection submodel.

Table A4. Parameters of the zero-inflated binomial model for
neuston tows. The prefix o denotes those parameters in the oc-
cupancy submodel, while the prefix d denotes those parame-
ters in the detection submodel.

Table A5. Indices of larval bluefin tuna (number under 100 m2

of sea surface) collected in bongo tows developed from
the Pennington delta-distribution method, the delta-lognormal
model and zero-inflated delta-lognormal model. The total
number of samples included in analyses per year, the number

of samples containing larvae per year, and the nominal fre-
quency of occurrence per year are represented by n, m, and f ,
respectively. Coefficients of variation (CV = standard error of
the index value/index value) and lower and upper 95% confi-
dence limits (LCL and UCL, respectively) are provided.

Table A6. Indices of larval bluefin tuna (number per 10-minute
tow) collected in neuston tows developed from the Penning-
ton delta-distribution method, the delta-lognormal model and
zero-inflated delta-lognormal model. The total number of sam-
ples included in analyses per year, the number of samples con-
taining larvae per year, and the nominal frequency of occur-
rence per year are represented by n, m, and f , respectively.
Coefficients of variation (CV = standard error of the index
value/index value) and lower and upper 95% confidence limits
(LCL and UCL, respectively) are provided.

Table A7. Multivariate delta-lognormal model parameters for
data collected in bongo and neuston tows.

Table A8. Indices of larval bluefin tuna collected in bongo and
neuston tows developed from the multivariate delta-lognormal
model. The number of samples included in analyses per year
represented by n.
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