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MOVEMENTS AND SUBMERGENCE PATTERNS OF
LOGGERHEAD TURTLES (CARE1TA CARE1TA) IN THE

GULF OF MEXICO DETERMINED THROUGH
SATELLITE TELEMETRY

Maurice L. Renaud and James A. Carpenter

ABSTRACT

Four loggerhead sea turtles, ranging from 56 to 93 cm in straight carapace length and from
28 to 98 kg in weight, were released in 18- to 78-m water depths and tracked for periods of
5.0 to 10.5 months in the Gulf of Mexico. Horne ranges extended from 954 to 28833 krn2

while core areas varied from 89.6 to 4,279 krn2• Core areas included several petroleum and
gas structures that may have been visited on a daily, weekly or monthly basis. Average
submergence times of loggerheads ranged from 4.2 min in June to 171.7 min in January.
The number of submergences per day was inversely proportional to the duration of submer-
gences per day. Loggerheads spent, on the average, over 90% of their time under water in
any given season. Bottom depth location of the loggerheads was significantly correlated to
Galveston's mean air temperature (-0.56 < r < 0.28) and mean sea surface temperature
(-0.72 < r < 0.25). Correlation was higher (-0.58 < r < 0.60) when temperatures were
regressed against distance from shore. Mean swimming speeds of these loggerheads were
from 0.4 to 1.4 krn·h-I, with over 95% of the values <5 krn·h-I.

Five species of endangered or threatened sea turtles inhabit the Gulf of Mexico
and Atlantic Ocean. These are the Kemp's ridley (Lepidochelys kempiz), green
(Chelonia mydas), hawksbill (Eretmochelys imbricata) leatherback (Vermochelys
coriacea) and loggerhead (Caretta caretta).

Loggerheads, the most abundant of these species, are distributed across conti-
nental shelves and estuaries of the Pacific, Atlantic and Indian Oceans. Their
geographic range extends from waters off Newfoundland in the north to Argentina
and Chile in the southern hemisphere. Nesting is concentrated in the temperate
zones and subtropics. It is thought that hatchlings spend 3-5 years (Carr, 1986)
in association with floating Sargassum mats, feeding on macroplankton, gastro-
pods, small fish and Sargassum. Juveniles, <40 cm straight carapace length, are
oceanic and subsequently move into estuaries and shallow coastal regions as su-
badults (Dodd, 1988). They feed on a wide variety of benthic fauna including but
not limited to, crabs, barnacles, mollusks and gastropods. Subadults of various
ages venture offshore into deeper waters where they mature at an age of 12-30
years (Frazer and Ehrhart, 1985) before returning to their nesting ground to mate.
Water temperature, currents and general weather patterns may effect the distri-
bution of these animals.

The movements and migrations of loggerheads have historically been pieced
together through flipper tagging studies accompanied by the opportunistic recap-
ture of these animals. Carr (1962), however, followed the migration of six mature
female loggerheads off Cedar Keys, Florida, for periods of less than a day, using
helium-filled balloons with monofilament line attached to the turtles' shells. More
recently, Stoneburner (1982) tracked eight loggerheads off Cumberland Island,
Georgia using satellite telemetry. His data support the theory of directed move-
ment of these turtles into estuaries and possibly offshore to feeding grounds. Both
satellite and radio telemetry were used to track the movement of a single log-
gerhead along the Mississippi, Louisiana and Texas eoastlines (Timko and Kolz,
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1982). Standora et al. (1979) in Costa Rica, and Dizon and Balazs (1982) in
Hawaii have tracked green sea turtles using radio and sonic telemetry. Standora
et aI. (1984) used radio telemetry to monitor the movements, diving cycles and
internal temperature changes of a leatherback turtle off Newport, Rhode Island.

To efficiently manage sea turtles we must understand their life histories and
determine their stage specific distributions. A survey of the literature revealed that-
substantial information is available on nesting, reproductive biology, and geo-
graphic ranges of sea turtles. Comparatively, knowledge on the movement and
diving cycles of loggerhead and other sea turtles is scant and published mostly
in gray literature.

The objective of this research was to characterize long term movement and
submergence patterns of loggerheads using satellite telemetry, and to initiate the
development of a database to make these behaviors more predictable.

METHODS

A.

Sea Turtle Capture.-Four loggerhead sea turtles, sleeping adjacent to pilings of gas/petroleum struc-
tures, were captured in the Gulf of Mexico during SCUBA diving operations (15-78 m) from No-
vember 1988 through June 1990. They were placed into mesh bags (2.5-cm bar mesh, 1.3 X 1 m;
Fig. lA) with a I-m diameter mouth opening and brought directly to the sea surface. Hinged bag
openings were supported by polyvinyl chloride tubing (PVC, 1.8 to 2.5 cm diameter) or aluminum
conduit (2.5 cm diameter).

Description and Application of Satellite Transmitters.-The satellite transmitter (Platform Transmitter
Terminal or PTT) was packaged by Telonics Inc. I in a polycarbonate casing with a rectangular base
plate extending one cm around the transmitter casing. An antenna, 15 cm in length, was located near
the anterior portion of the PTT (Fig. IB). The entire package weighed approximately 820 g in air and
measured 14 cm X 8 cm X 5 cm. A PIT was attached above the second neural scute of each sea
turtle. PTTs for three sea turtles were attached with resin and fiberglass cloth (Fig. IB). The fourth
PTT was secured with galvanized wires attached to holes in each comer of the PTT base plate and
to bone screws secured in the edge of the sea turtle's carapace (Fig. lC).

Data Description.-Service Argos Inc. (SAI)2 provided the following information for each PTT trans-
mission: 1) PTT identification number, 2) latitude and longitude of PTT, 3) class location index, 4)
date and time of PTT transmission, 5) date and time of the previous PIT location, and 6) the number
of transmissions used to calculate a PTT position fix.

The number and average duration of turtle submergences were computed from 0800-1959 (day)
and 2000-0759 (night) local time by the PTT with the use of a salt water switch located on the tag.
PTTs were programmed to disregard submergences :=::10seconds to prevent the accumulation of spu-
rious submergences and submergence durations caused by water splashing on the salt water switch.
Submergence depth was not monitored by the PTT. Battery power of the PTT was conserved by not
transmitting when the tag was under water. Duration of the last submergence and PTT temperature
were provided at the time of each PTT transmission. All data were transmitted (401.65 Mhz, 50-s
pulse interval) for 6-h periods, every other 6 h for 5.0 and 10.5 months. Turtles were allowed 2 weeks
to accustom themselves to carrying a PIT in the natural environment before data were used for
analyses.

Distribution of Turtle Positions.-Thrtle distribution was portrayed through various computer mapping
programs. An IBM compatible home range program developed by Ackerman et al.' was used to
d.evelop minimum convex polygon home ranges. The home range during the study period was con-
SIdered to be the area enclosing 95% of a turtle's locations. Locations outside this area were not
utilized in order to exclude potential outliers in the data set. The core area was defined as the area
encomp~sing 50% of a turtle's locations. One turtle displayed a concentrated use of three distinct
areas. Smce the 50% minimum convex polygon did not reflect this multimodal distribution, a 50%
core area was generated using the harmonic mean method and is included in the home range map of
that turtle (Fig. 2).

I Telonics Inc., 932 E. Impala Ave, Mesa, Arizona 85285-6699.

2 Service Argos Inc. 1801 McCormick Drive, Suite 10, Landover, Maryland 20785, 256 p.

l Ackerman, B. B., F. A. Leban, M. D. Samuel and E. O. Garton. Department of Wildlife, University of Idaho, Moscow, Idaho 83843.

B.

c.
Figure 1. Schematics of logged
shell with resin and fiberglass cl<



Figure 1. Schematics of loggerhead sea turtl~s A) in c~pture net, B) with PTT attached to sea turtle
shell with resin and fiberglass cloth and C) WIth PTT WIred to sea turtle shell.
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Distribution of Swimming Velocitie~.-Distance between consecutive locations was calculated for each
sea turtle. Using the time. intervals between locations, swimming speed was estimated in km·h-'.

Submergence Behavior.-The number of submergences, average submergence time, percent of time
spent under water and P'IT temperature were analyzed by season for individual and all loggerheads
combined, using analysis of variance with alpha set at 0.05. Duncan's Multiple Range Test was applied
to determine significant differences among data cells. For analytical purposes, seasons were defined
as winter (December-February), spring (March-May), summer (June-August) and fall (September-
November).

It is understood that serial correlation can occur in time series observations. Present behavior is
influenced by past behavior. Serial correlation should decrease as the time interval increases, until an
interval is reached in which correlation is insignificant. The level of serial correlation for behavioral
variables was determined using stepwise multiple regression at progressive time intervals, until an

.interval was reached in which all correlation was insignificant at P = 0.05. This interval was found
to be 5 days. Since data were grouped by season for analysis of variance the effect of serial correlation
was considered to be negligible.

Correlations with Temperature and Depth.-Linear regressions were computed using air and sea
surface temperatures (National Weather Service Monitor at Pier 25, Galveston, Texas) plotted against
bottom depth and distance from shore for each turtle location. Since temperature might have more
influence on movements during cooler months, separate regressions were calculated using data from
November through February. Kendall's tau, used for small sample sizes, was determined in addition
to Pearson's r for samples of N < 60.

RESULTS

Four loggerhead sea turtles, ranging from 56 to 93 cm in straight carapace
length and from 28 to 98 kg in weight, were released in 18- to 78-m water depths
in the Gulf of Mexico and tracked for periods of 5.0 to 10.5 months (Table 1).
The first sea turtle (LI) was released in June 1989 and the last recorded trans-
mission was from sea turtle L4 in January 1991. Mean bottom depth for sea turtle
locations ranged from 13 to 72 m (Table 2). Water depths were similar for log-
gerheads L2, L3 and L4 (15-16 m) while sea turtle LI was in water >65 m.
Mean distance from shore ranged between 49 and 54 km for L2, L3 and L4, and
up to 169 km for L1.

PIT Life and Failure.-Battery life of PITs was estimated to be I year by Te-
lonics Inc. This assumed turtles spent at least 95% of their time under water.
Since PIT life did not exceed 10.5 months it is believed that I) PIT battery life
was reduced because turtles spent less than 95% of their time under water or 2)
PITs became dislodged from the turtles.

It is likely that variability in individual behavior of the loggerheads accounted
for differences in PIT battery drainage, and the observed 5.5 month range in
PIT transmissions. One PTf, used experimentally prior to its placement on L4,
had a reduced life expectancy of 6 months. This PIT did last 5.0 months .

Under offshore environmental conditions, PITs attached with epoxy and fiber-
glass cloth transmitted from 5.0 to 10.5 months. Ll's PIT, secured with galva-
nized wire, transmitted for 8.5 months. LI was sighted 9 months later with the
PIT still mounted on the turtle's back.4 Although PIT detachment in the offshore
environment is possible, it was not considered a major problem. Loggerheads are

4 Personal Communication. Mike Parker. Exxon Oil Company. P.O. Box 60606, New Orleans, Louisiana 70160.

Figure 2. Estimated home ranges and core areas for turtles tracked from June 1989 through January
1991. Solid lines: core area (minimum convex polygon). Dashed lines: home range (minimum convex
polygon). Gray shaded lines: core area (harmonic mean).
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Sea
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N Depth (m) Distance (km)

Thrtle Wt(kg) All months Nov-Feb All months Nov-Feb All months Nov-Feb

L1 69 71 9 72 63 169 153
L2 28 83 41 16 17 49 50
L3 98 215 53 13 19 49 65
L4 32 134 53 15 16 54 54

Table 2. Sea turtle weights, average bottom depths and distance to shore of all sea turtle locations
and for November through February (N = number of locations received from the satellite)

5 Unpublished data. Renaud, M. L., J. A. Carpenter, S. A. Manzella, and J. A. Williams. 1993. Telemetric tracking of Green Sea
Turtles (Chelonia mydas) in Relation to Dredged Channels at South Padre Island, Texas July Through September 1992. Final Report to
U.S. Army Corps of Engineers (Galveston and New Orleans Districts). 55 p.

known to wedge themselves into confined areas near gas and petroleum platforms.
This type of behavior could result in the detachment of a PTT.

PTT malfunctions lead to erroneous data transmissions prior to the total shut
down of a tag. This was not observed and no PIT was considered to malfunction
during this study.
Distribution of Turtle Locations.- The maximum distance travelled by a logger-
head from its capture site was 290 km by L2. Distances for Ll, L3 and L4 were
90, 60 and 35 km respectively. The latter three turtles returned to, or within 1
km of their capture site after being at these max distances. L2 relocated to Lou-
isiana and never returned to Texas during the study period.

Ll, tracked from 20 June 1989 to 3 March 1990, was released on an artificial
reef 24 km to the east of its original capture site. It returned to its capture site in
17 days, and spent the next 6 months within an 8 km radius of that point (Fig.
2). Its core area, approximately 98.2 km2, included approximately 125 platform
structures. Overall home range encompassed 954 km2• During the last 3 months
of tracking, Ll moved 115 km to the west but was sighted 9 months later within
8 km of its capture site. Renaud et a1,5found similar homing behaviors from green
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Table 1. Information on the capture and release dates and locations, lengths and weights, for logger-
head sea turtles tracked in the Gulf'of Mexico

Capture date Release date Last date Straight

Sea location and location and location and carapace Weight

turtle water depth water depth water depth length (em) (kg)

Ll 10 Nov 1988 20 Iun 1989 10 Mar 1990 75 69.1
28°05.7'N 28°03.1'N 27°54.2'N
93°46.2'W 93°19.9'W 94°27.8'W
72-m depth 78-m depth 11O-m d.epth

L2 31 Aug 1989 03 Sep 1989 20 Iul 1990 56 27.6
29°07.5'N 29°07.5'N 29°04.2'N
94°04.4'W 94°04.4'W 91°51.6'W
18-m depth 18-m depth 13-m depth

L3 08 Oct 1989 21 Oct 1989 02 May 1990 93 97.7
29°03.7'N 29°03.7'N 29°03.3'N
94°16.1'W 94°16.1'W 94°13.6'W
18-m depth 18-m depth 16-m depth

L4 06 Iun 1990 15 Aug 1990 01 Ian 1991 62 31.8
29°08.2'N 29°03.7'N 28°56.2'N
94°12.4'W 94°16.1'W 94°23.9'W
ll-m depth 18-m depth 18-m depth
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, lengths and weights, for logger- Table 3. Frequencies of swimming speeds by loggerhead sea turtles. Numbers may sum to more than
100% due to rounding errors (N = number of locations used to determine speed between points)

od
th

190

lth

10

Straight Swimming speeds in km·h-1

carapace Weight Sea
length (em) (kg) turtle N <I 1.1 to 5.0 5.1 to 10 >10.0

75 69,1 Ll 71 91.7 8.3 0.0 0.0
L2 233 73.4 24.5 1.3 1.0
L3 132 83.6 13,0 3.5 0.0
L4 85 64.4 29.6 4.6 1.5

56 27,6

Distance (km)

ms. 1993. Telemetric tracking of Green Sea
Ily Through September 1992. Final Report to

o shore of all sea turtle locations
~ived from the satellite)

::<'eb All months Nav-Feb

169 153
49 50
49 65
54 54

Distribution of Velocities.-Location information was collected for these sea tur-
tles 522 times. Mean swimming speeds for turtles ranged between 0.4 and 1.4 .
km·h-I. Velocities between consecutive locations ranged from 0.02 to 22.2 km·h-I
(Table 3). Speeds values were :55.0 km·h-I 100%, 97.9%, 93.9% and 96.5% of
the time for L1, L2, L3 and L4 respectively. Speeds in excess of 10 km·h-I were
calculated twice for L2 and twice for L4. It is important to note that inherent
errors in these speeds may be due to 1) the assumption of continuous straight line
movement, 2) class location index error and 3) consecutive surfacings being out
of satellite view. Sea turtles may swim short distances, sleep, or backtrack toward
their earlier surface location before surfacing again. Therefore, actual swimming
speeds of these turtles are probably higher.

sea turtles (Chelonia mydas) at rock jetty habitats in south Texas. Green sea turtles
exhibited a diel periodicity with respect to night resting spots. Although home
range was up to 1,300 m, turtles always returned within 10 m of night resting
spots at the end of the day.

L2 was tracked for 10.5 months (9 September 1989 to 20 July 1990) and
exhibited more movement than any other sea turtle. Initially this sea turtle spent
97 days mostly within 8 km of its release site. However, in December 1989, L2
apparently responded to cold front by moving further offshore in search of warmer
water. A severe cold front stalled in the Houston, TX region for 2 weeks with
sub-freezing air temperatures, as low as -10°C, during 72 consecutive h. Mean
water temperatures (as transmitted by PITs) 48 km offshore of Texas dropped
over 6°C in less than a week. After the cold front passed, this sea turtle did not
return to its release site but moved east into waters off Louisiana spending 39,
46 and 58 days in three different locations off of the Louisiana coast before the
PIT stopped transmitting data (Fig. 2). The home range for this turtle included
28,833 km2• Core area covered 4,279 km2• Over 100 gas or petroleum structures
were within each of the four subareas of L2's core.

L3, tracked for 6.5 months (21 October 1989 to 2 May 1990), remained for all
practical purposes within 8 km of its capture and release site off Galveston, Texas
(Fig. 2). It was sighted, with the PIT still attached, by recreational divers and
personnel on oil company vessels at its capture site 10 months following its
release. Home range and core area encompassed 2,408 and 309 km2 respectively.

Movement of L4 was monitored for 5.0 months, 15 August 1990 to 11 January
1991. Aside from excursions to the south of its release site during the first 2
weeks following release, L4 also remained within 8 km of its release site (Fig.
2). It was seen during radio tracking studies and also by personnel on oil company
vessels at its release site during the 5.0 month tracking period. Extent of home
range, 1,435 km2, and core area, 89.6 km2 were similar to that of L3.
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Table 4. Mean values for the number of dives, average dive time, percent of time during spent under
water and PTf temperature for 12-h day or night periods, by sea turtle by season (a dash (-) = no
data available)

Sea
Fallturtle Winter Spring Summer

L1 Sample (N) 4/6 -/- 17/13 11/25
No. dives 159/31 -/- 29/23 17/16
Ave. dive 65/53 -/- 26/39 51/60
Pet. under 82/88 -/- 86/92 88/93
Temp. DC 22/25 -/- 29/28 28/28

. L2 Sample (N) 12/37 41/53 28/30 22/33
No. dives 44/4 103/38 273/148 74/24
Ave. dive 71/209 19/42 3/5 22/61
Pet. under 85/96 93/93 92/88 96/95
Temp. DC 18/19 25/25 32/32 27/27

L3 Sample (N) 22/16 28/30 -/- 13/9
No. dives 9/5 16/17 -/- 16/29
Ave. dive 96/178 49/50 -/- 53/36
Pet. under 95/97 94/91 -/- 95/94
Temp. DC 26/26 29/29 -/- 29/30

L4 Sample (N) 9/22 -/- 1/3 51/66
No. dives 85/24 -/- 79/31 76/31
Ave. dive 29/80 -/- 9/26 17/28
Pet. under 94/96 -/- 96/96 94/94
Temp, DC 18/19 -/- 31/32 27/28

Submergence Behavior_-Number of submergences, average submergence time,
and percent of time spent submerged per 12-h period were significantly different
by season for individual and all four animals combined (Table 4). The data set
for all turtles combined covered all months of the year. All text data are presented
as mean ± standard error. These loggerheads had the lowest number of submer-
gences in winter (11.9 ± 3.4·night-1 and 45.1 ± 12.0·day-l) and highest number
in summer (80.4 ± 9.3·night-1 and 178.8 ± 22.6·day-'). Mean number of sub-
mergences for the spring was 74.3 ± 11.4 (day) and 30.6 ± 4.7 (night), and 60.5
± 5.3 (day) and 26.2 ± 1.9 (night) in the fall. Thrtles made significantly more
submergences during the day than the night in all seasons (Fig. 3A).

Duration of submergence was inversely proportional to the number of sub-
mergences made during any given period. Average submergence time (AST) dur-
ing 12-h day or night periods was calculated by the PTT. The mean AST was
shortest in the summer (11.6 ± 1.8 min·day-' and 23.0 ± 2.7 min·night-I) and
longest in the winter (74.0 ± 9.0 min·day-I and 156.4 ± 11.8 min·night-I). Mean
AST for the spring was 29.8 ± 3.3 min·day-' and 44.7 ± 3.4 min·night-I. In the
fall mean AST was 26.7 ± 2.8 min·day-' and 42.9 ± 2.9 min·night.-I Turtles
made significantly longer submergences during the night in all seasons (Fig. 3B).

Total submergence time (the number of submergences per 12-h period multi-
plied by the AST for that period) was used to calculate the percent of time a sea
turtle spent under water. By season, total submergence time ranged from a mean
of 90.0 ± 0.6% during summer days to a mean of 95.3 ± 0.6% in winter nights
(Fig.3C).

Individual sea turtles exhibited varied submergence patterns. Mean values for
number of submergences, average submergence time, and percent of time spent
submerged are summarized by season for each sea turtle in Table 4. Extremes for
the mean number of submergences per 12-h period were 8.5 ± 0.8 (L3, Winter)
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Figure 3. Mean A) number of submergences, B) duration of submergences and C) percent submer-
gence by day, night and season pooled for 4 loggerhead turtles. Significant differences (P $ 0.05)
existed between day and night values for the mean number of submergences and mean duration of
submergence.
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Table 5. Pearson's T and Kendall's tau (*) for Galveston air and sea surface temperature against
location bottom depth and location distance from shore (n = no significant correlation at P = 0.95)

All months Nov through Feb
Sea

turtle Depth Distance Depth Distance

L1 Air temp 0.28 0.57 0.42n 0.70 T

0.22n 0.61 *
Water temp 0.25 0.60 0.49n 0.81 T

0.22n 0.61 *
L2 Air temp -0.66 -0.54 -0.41 -0.61 T

-0.32 -0.43 *
Water temp -0,72 -0.58 -0.74 -0.90 T

-0.49 -0.71 *
L3 Air temp -0.32 -0.45 -0.23n -0.53 T

-0.14n -0.40 *
Water temp -0.46 -0.52 -0.44 -0,71 T

-0.12 -0.50 *
L4 Air temp -0.08n -0.05n -0.12n -0.52 T

-0.08n -0.31 *
Water temp -O.l1n -0.08n -O.13n -0.40 T

-0.15n -0.42 *

to 273.1 ± 23.2 (L2, Summer) during the day and 4.4 ± 0.4 (L2, Winter) to
148.4 ± 11.0 (L2, Summer) during the night. Mean ASTs ranged from 3.1 ±
0.4 min (L2, Summer) to 95.9 ± 8.7 min (L3, Winter) in the day and 5.1 ± 0.4
min (L2, Summer) to 209.1 ± 17.6 min (L2, Winter) at night.

Correlations with Temperature and Depth.-Air and sea surface temperature like-
ly influence sea turtle movements. Significant correlation of Galveston's mean air
and sea surface temperatures against bottom depth for Ll were 0.28 and 0.25
respectively. Correlation was higher (r = 0.57 and 0.60) when air and sea surface
temperatures were regressed aga~nst distance from shore. Restricting the analysis
to November through February increased the r-value for every combination (Table
5). All correlations of mean Galveston temperature against bottom depth or dis-
tance from shore were negative and significant (r = -0.54 to -0.72) for L2 for
its entire tracking period. From November through February, r-values increased
for all comparisons except mean Galveston air temperature against bottom depth
(Table 5). Use of Kendall's tau reduced correlations, but they remained significant.

Correlations were significant and negative for mean Galveston air (r = -0.32)
and sea surface temperature (r = -0.46) against bottom depth for L3 (Table 5).
Higher correlation coefficients were present for Galveston's air and sea surface
temperatures against distance from shore, -0.45 to -0.52 respectively. Restricting
the data set to the months of November through February lowered the r-value for
bottom depth correlations and increased the r-values for the distance from shore
correlations. All correlations remained significant except mean Galveston air tem-
perature against bottom depth. Analyses using Kendall's tau reduced correlations
for all combinations. Correlations with bottom depths were no longer significant.

There were no significant correlations for mean Galveston air or mean sea
surface temperature against distance from shore or bottom depth of location for
L4 over the full tracking period (Table 5). This sea turtle exhibited the least
movement of the four loggerheads. When restricting the analysis to the months
of November through February, significant correlations were present between dai-
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The internal temperature of a PIT is a good estimator of ambient water tem-
perature. PIT temperature was relayed with the submergence information during
each PIT transmission. Mean ambient day and night temperatures were not sta-
tistically different during any season with the exception of winter for L1 and L2.
In both instances night temperature was higher than day temperature. However,
mean seasonal PIT temperatures were all significantly different from each other.
Hottest mean temperatures occurred during the summer and fall from May through
October (25.9° to 31.7°C) with August having the highest values. Cooler mean
temperatures ranged from (18.6° to 21.9°C) from November through April with
February having the lowest values. Mean temperatures ranged from 21.2° in the
winter to 30.5°C in the summer.

DISCUSSION

Satellite telemetry has been used to track animals since the early 1970's. Craig-
head et ai. (1972) were the first to monitor animals (elk, Cervus elaphus), using
satellite telemetry. Since then, birds (Keating et aI., 1991; Priede and French,
1991), fish (Priede, 1984), polar bears (Fancy et al., 1988), seals (McConnel,
1986), manatees (Mate et aI., 1986, Mate et aI., 1988), deer (Clute and Ozoga,
1983), whales (Mate, 1984), dolphins (Jennings and Gandy, 1980), and sea turtles
(Byles 1989a, 1989b; Byles and Dodd, 1989; Daniel, 1980; Gitschlag et al., 1992;
Hays et aI., 1991; Keinath et aI., 1989; Stoneburner, 1982; and Timko and Kolz,
1982) have been tracked successfully using satellite telemetry.

Technology of telemetric animal tracking with PITs evolved rapidly with the
increased needs of biologists. Early prototypes transmitted only geographic po-
sition. It is now possible to monitor physiological (body temperature, heart rate)
behavioral (diving information, activity patterns) and ecological (air temperature,
water depth and altitude) data. PITs are especially effective for gathering infor-
mation on animals that cannot be easily observed or captured. This methodology
is a valuable tool for studying animals, although it is not without drawbacks.

Cost Constraints.-Although the investment for a PIT and a year of data may
reach $8,000, use of satellite tags is cost effective, even over periods as short as
3 months. P1Ts eliminate the high cost of research vessels and around-the-clock
man power requirements.

Accuracy of Turtle Locations.- The accuracy of latitude and longitude calcula-
tions by the satellite is dependent on the number and temporal spread of trans-
missions received by a satellite, as well as, the angle to the satellite from the P1T.
SAI has modelled these parameters and arrived with a class location index (CLl)
assigned to each calculated latitude and longitude. The CLls determine the 95%
confidence area for calculated latitudes and longitudes. Circular confidence areas
have radii of 150 m, 350 m and 1 km for CLl-3, CLl-2 and CLl-1, respectively.
SAI set no limits of accuracy for CLl-O.

Limitations.- The PIT of marine animals must be on the water's surface for
approximately 4 min or at several different times during the 7-min satellite pass
to get a class 3 location index (± 150 m). It is rare for loggerheads to be on the
surface for more than 2 to 3 consecutive min or to surface several times as
mentioned above, so most of the locations received during this study were class
o and have an error of ± 1 km. One must decide if these location data are ac-
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ceptable for research on sea turtles, keeping in mind that location is not the only
information programmed into a satellite tag. PITs typically need only one up-
link with a satellite to transfer behavioral, physiological or environmental infor-
mation. These data may be more important than location accuracy as long as one
knows the general area of the PIT.

Verification of Data.-PITs transmit data accumulated from on-board computers.
Although tested by the manufacturer, there is no way to verify data transmissions
once a PIT has been deployed. On our tags, a fail safe code signifies the inactivity
of the saltwater switch over a 24-h period. This flags possible inconsistencies in

. the data stream. One may choose to disregard the data for such a transmission.
If you are receiving submergence information from a PIT you can be certain

that your animal is still alive. However, if you are no longer receiving information
from the PTT, then the tag has either used up its battery life, totally malfunctioned
or fallen off the experimental animal. It is also possible that the animal has died
and sunk to the bottom. Satellites cannot receive transmissions from PITs under
salt water. There is no way to tell which of the above scenarios occurred. On the
other hand, if you continually receive transmissions from the PIT without updated
submergence information, the animal may be floating dead at the surface, stranded
on the beach, or perhaps someone has obtained the tag and it is sitting outside
transmitting. In any case, data from PITs were not verified. One must have con-
fidence in the PIT manufacturer and the limits of the positions that are calculated
for you.

Tag Types.-Two models of PIT are presently available for sea turtles: the back-
pack model and the trailing model. Each has advantages and disadvantages de-
pendent on the habitat occupied by the animal. Standora et al. (1979, 1984, 1989,
and 1990), Byles (1988) and Byles and Dodd (1989), Timko and DeBlanc (1981),
Timko and Kolz (1982) and Stoneburner (1982) have utilized trailing tags to
monitor sea turtle movements. Trailing tags, secured to the shell with bolts and
cables, can last up to two years. This can be a problem, however, if the tag
becomes snagged underwater. A weak link in the cable or cable attachments will
allow the tag to break free and prevent an entangled animal from drowning.
Trailing transmitters are effective in open water environments without underwater
obstructions.

More recently, Telonics Inc.] and Byles6 have developed a low profile, compact
backpack PIT with minimal drag that can be fiberglassed to the turtle's carapace.
This method of tag attachment has been used successfully with radio and satellite
tags by Byles, 1989b; Renaud et aI., in press, Renaud et aI.5, Manzella et aI.,
1990; Stewart et aI., 1989. No adverse effects of backpack tags on sea turtle
behavior have been noted, either in the laboratory or the field (Renaud et al., in
press). Tags fiberglassed to the turtle's carapace will detach if severely bumped
or jarred when experimental animals wedge themselves into confined areas (Re-
naud et aI.5). Thus, there is essentially no risk to the animal with regards to
entanglement with backpack tags.

PIT Restrictions.- The feasibility of using backpack-type transmitters is depen-
dent on sea turtle weight. A 5% ratio in air, of tag weight to body weight of
experimental animal, for attached devices is considered safe by Aldridge and
Bringham (1988), Bradbury et al. (1979), Brander and Cochran (1969), Gessaman
and Nagy (1988), Kolz et al. (1980), and Massey et al. (1988).

6 u.s. Fish and Wildlife Service. P.O. Box 1306, Albuquerque, New Mexico 87103.
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Recommendations,-If properly attached, the use of either trailing or backpack
transmitters to monitor sea turtle movements and behavior is not a risk to these
animals. It is the responsibility of the researcher to be familiar with the acceptable
methods of attachment, limitations and size restrictions of the tags, general be-
havior of the animals and the characteristics of the probable environment the
animal may venture into with a tag.

Our work represents only the tip of the iceberg with respect to accumulating a
substantial data set on the movement patterns and diving behaviors of loggerhead
sea turtles. Definite seasonal patterns for the number and duration of submer-
gences by day and night existed for our experimental animals. We know that they
spent from 90 to 95% of their time under the water. Their movements were
influenced both by gradual and sharp air temperature fluctuations. Size of home
ranges and core areas varied considerably between turtles. Further distinctions
may exist in other areas of the world. The real task at hand will be the compilation
and subsequent dissemination of data from numerous researchers abroad. This
work is our modest attempt to lay the groundwork for such a data base.
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