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Abstract
Unraveling the diverse forces controlling the abundance and distribution of fish across a landscape has been

challenging, in part because few techniques exist to address multiple factors simultaneously in a single analysis.
We used spatially explicit, varying-coefficient generalized additive models to relate the summertime abundance and
distribution of yellow perch Perca flavescens to a variety of predatory, water quality, landscape, and density-dependent
factors. The model used 25 years of fishery-independent trawling data from southern Green Bay, Lake Michigan,
an area that supported major fisheries for yellow perch until their decline in the 1990s. Local catch per unit effort
(CPUE) of both age-0 and age-1 and older yellow perch was affected by the abundance of double-crested cormorants
Phalacrocorax auritus, dissolved oxygen, water clarity, and bottom depth, but not water temperature. In addition,
the local response of age-0 yellow perch CPUE to most predictor variables, including their own global density, had
a unique spatial structure. For instance, increased cormorant abundance was related to declines in local yellow
perch CPUE, especially near cormorant nesting islands, while increased dissolved oxygen levels were correlated with
increased local yellow perch CPUE in shallow nearshore areas of southern Green Bay. In addition, local yellow perch
CPUE increased near the mouth of the Fox River during years with higher water clarity, suggesting that water quality
may be limiting to yellow perch in this region. Our results suggest that it is important to explicitly account for the
different ways in which predictor variables influence fish abundance across the aquatic landscape.

Understanding the primary determinants of the abundance
and distribution of fishes is a fundamental endeavor that bridges
and unifies the fields of fish ecology and fisheries science. The
abundance and distribution of fish is notoriously variable over
space and time, resulting from complex mechanisms of habitat
selection (Chesson 1998). Myriad factors are known to influ-
ence the abundance (i.e., number of individuals at a particular
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location) and distribution (i.e., spatial patterns of local density)
of fishes, including abundance and distribution of predators
(Gilliam and Fraser 1987; Ciannelli et al. 2007), competitors
(Robertson 1996), water quality (Bacheler et al. 2009b), phys-
ical habitat (Lobb and Orth 1991), and density of conspecifics
(Fretwell and Lucas 1969; Post et al. 1997). Disentangling these
diverse and often competing forces has been a challenge because
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990 BACHELER ET AL.

few techniques exist that can address these factors simultane-
ously in a single analysis.

One novel approach that has been used recently to address the
numerous influences on the abundance and distribution of fish is
varying-coefficient generalized additive models (GAMs; Hastie
and Tibshirani 1993). A GAM is a nonlinear, nonparametric
regression technique that does not require a priori specification
of the functional relationship between the response and pre-
dictor variables (Hastie and Tibshirani 1990; Wood 2006). The
addition of varying-coefficient terms in a GAM can be used
to determine specific locations where fish are expected to in-
crease or decrease in local abundance with changes in any of
the predictor variables in the model (Bacheler et al. 2009a). For
instance, Bacheler et al. (2009a) used varying-coefficient GAMs
to demonstrate that spawning biomass, water temperature, and
ocean current transport combined to affect the spawning dis-
tribution of walleye pollock Theragra chalcogramma in She-
likof Strait, Alaska. Using a similar varying-coefficient GAM,
Bartolino et al. (2011) found ontogenetic and sex-specific differ-
ences in density-dependent habitat selection for yellowfin sole
Limanda aspera in the eastern Bering Sea. Varying-coefficient
GAMs have shown great promise to simultaneously evaluate the
multitude of forces controlling the abundance and distribution
of fish in a spatially explicit manner.

Varying-coefficient GAMs could be used to enhance our un-
derstanding of the various controls of the abundance and dis-
tribution of yellow perch Perca flavescens. In Lake Michigan,
yellow perch is an economically and ecologically important
species, supporting recreational and commercial fisheries since
the late 1800s (Wells and McLain 1972). Age-1 and older yel-
low perch spawn in nearshore areas during the spring, and return
to deeper, offshore waters after spawning (Glover et al. 2008).
Yellow perch larvae migrate to limnetic areas for 30–40 d be-
fore returning to nearshore demersal environments (Noble 1975;
Fisher et al. 1999). Tagging results indicate that most adult yel-
low perch are recaptured near their tagging locations, but a small
proportion of the population may stray up to 100 km (Smith and
Van Oosten 1940). During the 1980s and 1990s, yellow perch
were the most popular sport fish in Lake Michigan (Bence and
Smith 1999). Dramatic variation in yellow perch population
abundance and distribution has been observed throughout their
range (Koonce et al. 1977; Henderson and Nepszy 1988), com-
plicating assessment and management (Francis et al. 1996).
Since the late 1980s, however, yellow perch in Lake Michigan
have declined, presumably because of poor recruitment (Francis
et al. 1996; Marsden and Robillard 2004).

A multitude of factors are thought to influence yellow perch
abundance and distribution. One of the most studied causes of
fluctuations in yellow perch population abundance has been fish
and avian predators. For instance, double-crested cormorants
Phalacrocorax auritus have been implicated in declines of yel-
low perch in Lake Huron (Fielder 2008), Lake Ontario (Burnett
et al. 2002), Oneida Lake (VanDeValk et al. 2002; Rudstam
et al. 2004), and Green Bay (Meadows 2006), although some

discount cormorant predation as a major cause of yellow perch
declines (Diana et al. 2006). Walleyes Sander vitreus have also
been shown to significantly reduce yellow perch populations in
some areas (Nielsen 1980; Hartman and Margraf 1993) but not
others (Fielder 2008).

Water quality and physical habitat have also been shown to
affect yellow perch abundance and distribution in some aquatic
systems. A number of water quality variables such as water
temperature (Fisher et al. 1999; Fielder 2008), dissolved oxy-
gen (Roberts et al. 2009), water clarity (Mayer et al. 2000), and
pH (Carey and Mather 2009) have been related to catch or abun-
dance of yellow perch in various places, as have physical habi-
tat and landscape variables such as substrate and bottom depth
(Fisher et al. 1999; Janssen and Luebke 2004). Some water qual-
ity variables may influence the distribution of yellow perch over
relatively short time scales (e.g., individuals avoiding hypoxic
waters), while others can influence abundance over longer time
frames (e.g., the filtering of dreissenid mussels that increases
water clarity and influences food web dynamics). Despite much
research attention in diverse aquatic systems throughout their
range, however, there has been a notable lack of consistent re-
lationships between yellow perch and various habitat variables.

The objective of this study was to develop quantitative models
to identify the factors controlling the abundance and distribution
of age-0 and age-1+ (age 1 and older) yellow perch. We used
25 years of trawling data from Green Bay, Lake Michigan, to
create varying-coefficient GAMs to assess the spatially explicit
effects of a predator (double-crested cormorants) and various
water quality and landscape variables on age-0 and age-1+
yellow perch abundance and distribution. Density-dependent
habitat use has also been documented for age-0 yellow perch
(Post et al. 1997), so we tested for its presence in our study by
incorporating a varying-coefficient global index of abundance
term in our GAM model.

METHODS
Study area.—The Bay of Green Bay (hereafter, Green Bay)

is a shallow estuary-like bay in the northwest corner of Lake
Michigan (Figure 1). Green Bay is approximately 190-km long,
extending from the mouth of the Fox River northeast to Big Bay
de Noc; it averages 37-km wide and 20-m deep. The western
shoreline of Green Bay primarily consists of wetlands and soft
sediments, but a higher proportion of rocky substrates exists
along the eastern shoreline. The Green Bay watershed drains an
area of approximately 40,000 km2, about one-third of the total
Lake Michigan basin, and consists of agricultural, urban, and
forested land (Bertrand et al. 1976). Many rivers drain into Green
Bay, the largest being the Fox River (Figure 1). The lower Fox
River and Green Bay are designated an “Area of Concern” by
the U.S. Environmental Protection Agency, based on poor water
quality conditions stemming from runoff pollution from urban
and rural areas, municipal and industrial wastewater discharges,
and degraded habitats (Manchester-Neesvig et al. 1996). The
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CONTROLS ON ABUNDANCE AND DISTRIBUTION OF YELLOW PERCH 991

FIGURE 1. Study area in southern Green Bay showing the 78 trawling sites, seven water quality sampling sites, and five double-crested cormorant nesting
islands. Trawling and water quality sampling was conducted from 1985 to 2009.

once significant commercial and recreational fishing activities
in Green Bay, including those for yellow perch, are currently
thought to be impaired by water quality conditions as well as
negative interactions with exotic species (Reed et al. 2004).

Southern Green Bay trawl survey.—The Wisconsin Depart-
ment of Natural Resources initiated a fishery-independent trawl
survey in 1978 to index yellow perch in southern Green Bay.
Seventy-eight permanent trawling sites were eventually chosen,
based on feasibility of trawling (lack of rocks) or on historical
commercial catches (Figure 1); trawling sites were assumed to
be representative of all habitats in southern Green Bay. Sites
were sampled a single time in August or September of each
year (Table 1). Trawl sites were inconsistently sampled in space
and time before 1985, so we only included data from 1985 to
2009 in our analyses.

Yellow perch catch per unit effort (CPUE; number/min) at
each site was quantified via an otter trawl deployed from a
research vessel. The otter trawl was 7.6-m wide, had a 7.9-m
headrope, 38-mm mesh wings and body, and a 13-mm mesh
tail bag. Trawls were deployed for 5 min (timed from the end
of deployment to beginning of retrieval) at a speed of 4.6–
5.6 km/h during daylight hours. All yellow perch caught were
enumerated, and a subsample of 100 age-0 and 500 age-1+
yellow perch were measured for total length (TL) within each

of the 12 clusters of sampling sites (Figure 1). Yellow perch
less than 100 mm TL were considered to be age 0, and those
100 mm TL or more were classified as age 1+. For verification
purposes, within each region, an aging structure was taken from
a subsample of 20 yellow perch per 10-mm increment for age-
1+ fish (>100 mm): scales for fish less than 150 mm, and anal
spine cross sections for larger fish. Scales from a sample of the
largest fish less than 100 mm were used to verify the assignment
of age 0. Counts of age-0 and age-1+ yellow perch from each
trawl were adjusted in the rare case that an age-0 or age-1+ was
misclassified based its length.

Varying-coefficient GAMs.—A varying-coefficient GAM
was used to test for the spatial and temporal effects of vari-
ous predictor variables on age-0 or age-1+ yellow perch trawl
CPUE in southern Green Bay. Generalized additive models ex-
tend traditional additive models by allowing for alternative dis-
tributions of the underlying random variation, just as general-
ized linear models allow for alternative distributions for linear
models. A notable advantage of GAMs is their use of nonpara-
metric smoothed curves to account for nonlinearities between
predictor and response variables, common in ecological studies
(Hastie and Tibshirani 1990). The GAMs use a nonparametric
smoother instead of the traditional least-squares approach in
multiple linear regression.
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992 BACHELER ET AL.

TABLE 1. Yellow perch trawl survey data collected by the Wisconsin Department of Natural Resources in southern Green Bay (1985–2009), which were used
to index yellow perch abundance.

Number of yellow perch Mean (SE) number/haul

Year
Number
of hauls Earliest date Latest date Age 0 Age 1+ Age 0 Age 1+

1985 56 Aug 06 Sep 25 16,306 5,457 58.4 (16.6) 19.5 (4.6)
1986 52 Aug 12 Sep 22 18,202 6,933 70.0 (17.1) 26.7 (5.1)
1987 61 Aug 24 Sep 03 4,643 9,713 15.3 (4.1) 31.9 (5.1)
1988 75 Aug 09 Sep 13 9,408 16,748 25.1 (5.0) 44.7 (4.3)
1989 67 Aug 08 Aug 30 2,008 7,060 6.0 (1.5) 21.2 (2.7)
1990 78 Aug 22 Sep 11 3,544 4,803 9.1 (2.2) 12.3 (2.0)
1991 77 Aug 07 Aug 28 12,778 5,459 33.2 (4.4) 14.2 (1.7)
1992 75 Aug 11 Sep 01 1,948 10,440 5.2 (2.1) 27.8 (4.1)
1993 77 Aug 10 Aug 31 178 4,800 0.5 (0.1) 12.6 (1.6)
1994 64 Aug 08 Aug 23 1,264 3,637 4.0 (1.0) 11.4 (2.5)
1995 63 Aug 08 Aug 22 2,203 1,380 7.0 (2.2) 4.4 (0.8)
1996 64 Aug 06 Aug 29 1,048 1,260 3.3 (1.4) 3.9 (0.9)
1997 76 Aug 04 Aug 25 619 670 1.6 (0.5) 1.7 (0.3)
1998 75 Aug 04 Aug 27 6,554 528 18.3 (4.4) 1.4 (0.3)
1999 77 Aug 10 Sep 02 424 2,445 1.2 (0.4) 6.5 (1.2)
2000 78 Aug 09 Aug 28 837 719 2.2 (0.5) 1.9 (0.4)
2001 74 Aug 21 Sep 05 2,148 363 5.9 (1.4) 1.0 (0.2)
2002 74 Aug 13 Aug 28 3,077 691 9.0 (3.3) 1.9 (0.7)
2003 78 Aug 04 Aug 18 50,820 564 148.6 (42.6) 1.6 (0.3)
2004 78 Aug 02 Aug 19 4,680 4,343 12.0 (3.3) 11.2 (2.5)
2005 78 Aug 09 Aug 25 10,080 1,269 25.8 (7.2) 3.2 (0.5)
2006 78 Aug 09 Aug 23 7,514 685 19.2 (7.2) 1.8 (0.4)
2007 78 Aug 07 Aug 16 19,612 394 50.3 (12.7) 1.0 (0.2)
2008 78 Aug 04 Aug 20 5,551 746 14.2 (4.5) 1.9 (0.3)
2009 77 Aug 03 Aug 18 10,099 403 26.3 (10.7) 1.0 (0.2)
Total 1,808 Aug 02 Sep 25 195,545 91,510 4.5 (2.3) 2.1 (0.5)

We used a unique type of GAM called a varying-coefficient
GAM (Hastie and Tibshirani 1993) to relate yellow perch to
predictor variables. Varying-coefficient GAMs can relate the
spatial and temporal dynamics of yellow perch to the poten-
tially spatially heterogeneous effects of density-dependent and
density-independent variables (e.g., Bacheler et al. 2009a). In
our case, we used varying-coefficient GAMs to predict how lo-
cal (i.e., at a given trawling site) yellow perch CPUE is expected
to be more affected by overall global (i.e., the entire southern
Green Bay) changes in yellow perch indices of abundance, water
quality, and predation variables. These spatially explicit mod-
els have only very recently been used in ecological studies but
have shown great promise in elucidating spawning dynamics
and habitat use of marine fish (e.g., Bacheler et al. 2009a, 2010;
Bartolino et al. 2011). Local age-0 and age-1+ yellow perch
CPUE data, the response variables, were loge transformed to
achieve normality and reduce heteroscedasticity.

We examined the influence of seven predictor variables on
local yellow perch CPUE: global yellow perch indices of abun-
dance, cormorant abundance, water temperature, dissolved oxy-

gen, water clarity, bottom depth, and position (Figure 2). These
particular predictor variables were chosen based on the avail-
ability of reliable data from southern Green Bay and previous
research on yellow perch elsewhere throughout their range (Post
et al. 1997; Fisher et al. 1999; Mayer et al. 2000; Meadows 2006;
Fielder 2008; Roberts et al. 2009). Some potentially important
predictor variables (e.g., walleye and zebra mussel Dreissena
polymorpha abundance) were not included in the GAM models
because reliable population size or density data were unavail-
able for these species in Green Bay. We used Pearson’s product-
moment correlation analysis to test for significant collinearities
among predictor variables that may influence model results.

Global age-0 and age-1+ yellow perch indices of abundance
for southern Green Bay were included as predictor variables
in the GAM analyses. Global age-1+ indices of abundance
were estimated from a statistical catch-at-age model for south-
ern Green Bay (referred to as Age1+index in the model) that
was based upon commercial effort and harvest, recreational ef-
fort and harvest, and trawling survey data (T. Paoli, unpub-
lished data). Commercial effort and harvest were weighted more
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CONTROLS ON ABUNDANCE AND DISTRIBUTION OF YELLOW PERCH 993

FIGURE 2. Predictor variables included in the generalized additive models
for yellow perch abundance and distribution in southern Green Bay, 1985–2009:
(A) mean annual (global) loge transformed age-0 catch per unit effort (CPUE;
number/min) from the trawling survey (i.e., Age0index) and annual loge trans-
formed age-1+ abundance, as estimated from a statistical catch-at-age model
for southern Green Bay (i.e., Age1+index); (B) observed and predicted num-
bers of breeding double-crested cormorants; (C) mean August and September
water temperature and dissolved oxygen at seven monitoring sites in south-
ern Green Bay (see Figure 1); and (D) mean August and September water
clarity.

heavily in the model than other inputs, based on the assumption
that these are the most reliable and consistent indices. Annual
model-based estimates of the total number of age-2 and older
yellow perch composed the index; numbers of age-1 yellow
perch were excluded from the index owing to highly variable
estimates of this age-class in recent years, probably because of
retrospective errors in the statistical catch-at-age model (Hilborn
and Walters 1992). The total number of yellow perch was loge

transformed before inclusion in the model as the Age1+index
(Figure 2A). The statistical catch-at-age model, however, did not
provide estimates of age-0 abundance for Green Bay because
commercial and recreational fisheries do not harvest this age-
class. To create a global age-0 index (Age0index) of abundance
for southern Green Bay, we instead used a log-transformed mean
age-0 CPUE from the annual trawling survey as Age0index
(Figure 2A).

Double-crested cormorant (hereafter, cormorant) abundance
in southern Green Bay was estimated from nest counts by the
U.S. Department of Agriculture, Wildlife Services (C. Lovell,
USDA, personal communication). Cormorants nest on five is-
lands in southern Green Bay: Cat and Lone Tree islands near
the mouth of the Fox River and Hat, Jack, and Little Strawberry
islands in the northern part of our study area (Figure 1). The
Wildlife Services has conducted nine annual surveys of cor-
morant nest abundance between 1985 and 2009; each annual
survey consisted of one to three counts by foot, boat, or airplane
between late May and early July (Matteson et al. 1999). Be-
cause cormorants can forage at least 40 km away from nesting
islands (Custer and Bunck 1992), cormorant nest counts from
all islands within 40 km of southern Green Bay were used in
this analysis. Annual adult cormorant abundance was assumed
to be twice the mean number of nests counted during each
survey (Figure 2B). Because our GAM required annual data
on adult cormorant abundance, we predicted cormorant annual
abundance (Cormorant) between 1985 and 2009 using a simple
linear regression. This is a reasonable assumption because of
the near linear increase of cormorants in southern Green Bay
since 1985 (R2 = 0.97; Figure 2B).

Water quality information for southern Green Bay has been
recorded by the Green Bay Metropolitan Sewerage District
(GBMSD) since 1985 (T. Valenta, GBMSD, unpublished data).
Water temperature (Temp), dissolved oxygen (Oxygen), and wa-
ter clarity (Clarity) were not regularly measured at each trawling
site in the trawling survey. Instead, we used mean August and
September water quality values from GBMSD from seven sites
in southern Green Bay (Figure 1). At each site, vertical pro-
files of water temperature and dissolved oxygen and a single
surface Secchi disk reading (i.e., water clarity) were taken four
or five times throughout August and September. Water quality
data were then averaged across depth and sampling period to
provide a single mean value of water temperature, dissolved oxy-
gen, and water clarity for each year (Figure 2). We assume that
fluctuations in water quality conditions at the seven monitoring
sites track with water quality conditions throughout southern
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994 BACHELER ET AL.

Green Bay. Annual water quality data allowed us to examine the
ways in which environmental conditions influenced the spatial
distribution of age-0 or age-1+ yellow perch on a yearly time
scale but not how local CPUE was influenced by local envi-
ronmental conditions. That question would have required water
quality information for each trawl site, which was unavailable.

We began by coding a full (most-complex) spatially explicit,
varying-coefficient GAM for age-0 yellow perch, which in-
cluded smoothed functions for depth and position and varying-
coefficient terms for all other predictor variables. Depth was not
included as a varying-coefficient term because its annual rela-
tionship to space was invariant, and position was either excluded
or included as a smoothed nonlinear term. The full age-0 model
was

xy,(φ,λ) = a + s1(Depth) + s2(φ, λ) + g1(φ, λ)

× Cormoranty +g2(φ, λ) × Age0indexy + g3(φ, λ)

× Tempy + g4(φ, λ) × Oxygeny +g5(φ, λ)

× Clarityy + ey(φ,λ); (1)

xy,(φ, λ) = the local log-transformed age-0 yellow perch
CPUE in year y at latitude φ and longitude λ;

y = mean annual values (predictor variables lacking
the y subscript were measured at each trawling
site);

a = the intercept;
Depth = bottom depth measured at each trawl site;
φ = latitude of each trawl site;
λ = longitude of each trawl site;
Cormorant = cormorant abundance;
Age0index = the mean (global) age-0 yellow perch CPUE;
Temp = mean water temperature;
Oxygen = mean dissolved oxygen;
Clarity = mean water clarity;
s1–2 = nonparametric smoothing functions;
g1–5 = nonparametric varying-coefficient functions;
ey,(φ, λ) = the random error assumed to be normally dis-

tributed (on a log scale) with a mean of zero and
finite variance.

A separate (full) GAM was also developed for age-1+ yellow
perch. The only difference between the age-1+ model and equa-
tion (1) is that Age1+index (global age-1+ index of abundance)
was substituted for Age0index.

Model selection.—The full age-0 and age-1+ models were
compared with a variety of reduced models using Akaike in-
formation criterion (AIC) and standard model diagnostics. The
AIC balances the number of parameters of a model and its like-
lihood (Burnham and Anderson 2002), and models with low-
est AIC scores were selected over models with higher scores.
Reduced models consisted of different forms of each predictor
variable, described here from most to least complex: (1) varying-

coefficient terms, where local yellow perch CPUE is allowed to
vary differently across space with changes in the predictor vari-
able, (2) nonlinear smoothed terms, where local yellow perch
CPUE is allowed to vary nonlinearly across the range of predic-
tor variable values (but the same across space), (3) linear terms,
where local yellow perch CPUE is a simple linear function of
the predictor variable, and (4) the predictor variable is excluded
from the model. The full model was compared with various
reduced models by maintaining the most complex forms of all
predictor variables, except for a single predictor variable that
was included with different levels of reduced complexity.

The most parsimonious form of each predictor variable was
chosen based on �AIC values. We computed simple differences
(�i) between the best model (AICmin) and the ith model (AICi)
as

�i = AICi − AICmin. (2)

In our analyses, we selected the form of each variable with
the lowest AIC scores (i.e., �i = 0). In the case of varying-
coefficient or smoothed terms, estimated degrees of freedom
were chosen using automatic software selection.

All models were coded and analyzed via the mgcv library
(version 1.6–2; Wood 2008) in R version 2.11.1 (R Develop-
ment Core Team 2010) and the Gaussian family model and
identity link function. Other distribution types were evaluated
but compared unfavorably with the Gaussian distribution on
log-transformed data. The gam.check function was used to ver-
ify that all models presented in this paper met assumptions
of constant variance and normal residuals. There were also no
consistent patterns in the relationship between the semivariance
of the model residuals and distance between sampling points,
indicating negligible spatial autocorrelation in the residuals.

RESULTS
A total of 1,808 trawl samples from 1985 to 2009 were used

in our study, ranging from 52 to 78 annually (Table 1). Most of
the trawling each year occurred in August, with the exception
of a few years in the 1980s when some trawling was conducted
into late September. Overall, 195,545 age-0 and 91,510 age-
1+ yellow perch were caught in the trawling survey (Table 1).
There was substantial variation in annual yellow perch CPUE.
Age-0 CPUE was highest in 1985, 1986, and 2003 and lowest
in 1993, 1997, and 1999, while age-1+ CPUE was highest in
1987, 1988, and 1992 and lowest in 2001, 2007, and 2009.

There were only two significant correlations between pre-
dictor variables in our study (Table 2). The Age1+index was
negatively related to Cormorant (r = −0.84; P < 0.05), and Cor-
morant was positively related to Oxygen (r = 0.46; P < 0.05).
All other correlations were insignificant at P = 0.05. Collinear-
ities were not deemed numerous enough to drop any predictor
variables from the GAM analyses.

Based on AIC scores, the best GAM model explaining local
age-0 yellow perch CPUE included all predictor variables except
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CONTROLS ON ABUNDANCE AND DISTRIBUTION OF YELLOW PERCH 995

TABLE 2. Pearson’s correlation matrix for predictor variables used in the age-0 and age-1+ yellow perch generalized additive models built on trawling data
from 1985 to 2009 in southern Green Bay. Asterisks indicate significance (P < 0.05). Variable descriptions are provided with equation (1).

Predictor variable Depth Age0 index Age1+ index Cormorant Temp Oxygen Clarity

Depth 1.0
Age0index −0.02 1.0
Age1+index −0.01 0.02 1.0
Cormorant 0.02 0.05 −0.84* 1.0
Temp −0.02 −0.01 0.30 0.09 1.0
Oxygen −0.02 0.10 −0.40 0.46* −0.09 1.0
Clarity −0.03 0.09 0.26 −0.27 −0.20 −0.03 1.0

Temp (Table 3). The age-0 model included Depth as a linear
term; Position as a smoothed term; and Age0index, Cormorant,
Oxygen, and Clarity as varying-coefficient terms. Overall, the
age-0 model explained 63.1% of the deviance in local age-0
yellow perch CPUE (Table 4).

The best age-1+ yellow perch GAM model included the
same predictor variables as the age-0 GAM model, but two of
the predictor variables were included in different forms (Table
3). In the age-1+ model, Depth, Position, and Age1+index
were included as smoothed terms, while Cormorant, Oxy-
gen, and Clarity were included as varying-coefficient terms

TABLE 3. �AIC values for generalized additive models of age-0 and age-1
and older yellow perch constructed from 1985–2009 trawling data for southern
Green Bay. The column headings refer to the four tested forms for each predic-
tor variable: (1) varying coefficient, (2) smoothed nonlinear, (3) linear, or (4)
excluded from the model. Variable descriptions are provided with equation (1).
Bold italics indicate variables included in the final models; blank cells indicate
terms that are not applicable to the models.

Form

Predictor
variable

Varying
coefficient

Smoothed
nonlinear Linear Excluded

Age-0 model
Depth 0.0 0.0 2.7
Position 0.0 3.4
Age0index 0.0 155.9 191.6 737.2
Cormorant 0.0 141.7 196.4 195.3
Temp 5.5 4.7 4.7 0.0
Oxygen 0.0 96.9 97.5 109.1
Clarity 0.0 9.9 39.1 62.6

Age-1+ model
Depth 0.0 72.2 72.7
Position 0.0 1.5
Age1+index 14.9 0.0 8.0 586.9
Cormorant 0.0 14.6 46.1 53.3
Temp 11.6 5.6 5.6 0.0
Oxygen 0.0 1.3 3.5 2.6
Clarity 0.0 9.7 18.3 36.6

(Table 4). The age-1+ model explained 65.0% of the deviance
in local age-1+ yellow perch CPUE (Table 4).

The effects of Position on local yellow perch CPUE from the
GAM models corresponded very closely with mean trawling
site-specific yellow perch CPUE (Figure 3). For instance, mean
age-0 yellow perch CPUE was highest along the western and
southern shorelines of the study area and lowest offshore and
along the eastern shoreline, which matched the model-estimated
effects of position very closely (Figure 3). Mean age-1+ yellow
perch CPUE was more evenly distributed in southern Green Bay
compared with age-0 CPUE, except for a lower CPUE in the
eastern section of our study area. Similar to age-0 fish, the spatial
effects from the age-1+ GAM model corresponded closely to
mean site-specific age-1+ CPUE.

Bottom depth was also an important predictor of local yellow
perch CPUE. Local age-0 yellow perch CPUE was negatively
related to Depth (i.e., highest effect on CPUE in the shallowest
water), while age-1+ yellow perch displayed a dome-shaped

TABLE 4. Estimated degrees of freedom for the predictor variables in the final
generalized additive models for age-0 and age-1 and older yellow perch based
on 1985–2009 trawling data for southern Green Bay. The deviance explained by
the final age-0 model was 63.1%, versus 65.0% for the age-1+ model. Variable
descriptions are provided with equation (1); na = the predictor variable was not
applicable to that particular model and ex = the predictor variable was excluded
from the model based on Akaike information criterion score.

Model

Variable Age-0 Age-1+
Depth 1.0a 7.5b

Position 17.8b 12.7b

Age0index 22.8c na
Age1+index na 6.5b

Cormorant 21.0c 18.6c

Temp ex ex
Oxygen 17.2c 16.3c

Clarity 11.6c 13.0c

aThe predictor variable used in the final model was linear.
bThe predictor variable used in the final model was smoothed nonlinear.
cThe predictor variable used in the final model was varying coefficient.
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996 BACHELER ET AL.

FIGURE 3. Observed and predicted local yellow perch trawl survey catch per unit effort (CPUE; number/min) in southern Green Bay, 1985–2009: (A) mean
local age-0 and (B) age-1+ CPUE and (C) partial effects of position (latitude and longitude) on loge transformed local age-0 and (D) age-1+ CPUE at average
values of all other predictor variables.

response to Depth that reached its maximum at approximately
13 m (Figure 4).

Global indices of abundance (Age0index or Age1+index)
affected local age-0 yellow perch CPUE differently than lo-
cal age-1+ CPUE. We observed a spatially variable (varying-
coefficient) response of local age-0 CPUE to a 1-unit increase
in Age0index (Table 4); local age-0 CPUE increased through-
out the study region but particularly in nearshore areas of the
western shoreline of southern Green Bay, and much less so
in deeper, offshore areas (Figure 5A). In contrast, local age-
1+ CPUE was included in the age-1+ model as a smoothed
(not varying-coefficient) term. Therefore, the increase observed
in local age-1+ CPUE as Age1+index increased was found
to increase the same amount throughout southern Green Bay
(Figure 5B).

We observed spatially explicit effects of Cormorant, Oxy-
gen, and Clarity on local yellow perch CPUE, as measured
by the varying-coefficient terms of the GAMs (Table 3). Both
local age-0 and age-1+ yellow perch CPUE decreased with in-
creasing Cormorant, but declines were most obvious in regions
nearest to cormorant nesting islands in the far northern and

southern sections of our study area (Figure 6). Increased Oxy-
gen was related to increases in local age-0 and age-1+ yellow
perch CPUE, particularly in nearshore areas along the western
shoreline. Last, increased Clarity was related to increased local
age-0 and age-1+ yellow perch CPUE near the mouth of the
Fox River.

DISCUSSION
Previous work has shown that water quality, landscape,

density-dependent, and predator variables affect the abundance
and distribution of fish species, but these factors have typically
been studied in isolation from other important variables. Alter-
natively, we used a novel varying-coefficient GAM to show that
cormorants, dissolved oxygen, water clarity, bottom depth, and
global yellow perch indices of abundance combined to affect the
abundance and distribution of age-0 and age-1+ yellow perch
in Green Bay. The local response of yellow perch CPUE to four
of these factors (i.e., global yellow perch indices of abundance,
cormorants, dissolved oxygen, and water clarity) had a unique
spatial structure, suggesting that local yellow perch CPUE was
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FIGURE 4. Partial effect of bottom depth on loge transformed local (A) age-0
and (B) age-1+ yellow perch catch per unit effort (CPUE; number/min) in the
southern Green Bay trawl survey, 1985–2009, at average values of all other
predictor variables. The shaded areas are 95% confidence intervals, and the
small bars on the x-axes indicate sampling intensity.

affected differently across space as these predictor variables
increased or decreased.

Water quality in southern Green Bay has been historically
degraded due to excessive nutrients and sediments entering the
bay from the Fox River (Klump et al. 1997), which has re-
sulted in decreased water clarity and dissolved oxygen levels
(Kennedy 1982). Both age-0 and age-1+ yellow perch were
found at higher local CPUE near the mouth of the Fox River
during years of higher water clarity and in nearshore areas dur-
ing years with higher dissolved oxygen levels, suggesting that
reductions in water clarity or dissolved oxygen may limit local
yellow perch CPUE in these areas. Given that the extreme south-
ern portion of Green Bay has historically been a major center
of abundance for yellow perch, the ecological and fishery con-

FIGURE 5. Panel (A) shows the spatially explicit effect of increased global
age-0 yellow perch catch per unit effort (CPUE; number/min) on local age-0
CPUE from the southern Green Bay trawl survey, 1985–2009. The × symbols
indicate expected increases (black) or decreases (gray) in local yellow perch
CPUE with a 1-unit increase in global CPUE. The sizes of the symbols indicate
the sizes of the positive or negative effects (effects not significantly different
from zero were excluded). Panel (B) shows the effect of global age-1+ abun-
dance on loge transformed local age-1+ yellow perch CPUE at average values
of all other predictor variables. The shaded areas are 95% confidence intervals,
and the small bars on the x-axes indicate sampling intensity.

sequences of reduced water clarity could be significant. Local
age-0 and age-1+ yellow perch CPUE were not influenced by
summertime water temperature in our study, probably because
the range of summertime water temperatures experienced over
the study was not limiting to yellow perch. We note that wa-
ter quality information from individual trawl locations was not
available, so we instead used average annual summertime water
quality estimates. The disadvantage of this approach is not be-
ing able to elucidate yellow perch preferences of environmental
conditions that may be varying over small temporal or spatial
scales.

Age-0 yellow perch in Green Bay displayed density-
dependent habitat use, expanding into deeper, offshore waters at
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998 BACHELER ET AL.

FIGURE 6. Spatially explicit effects of increased double-crested cormorant abundance (A, D), dissolved oxygen (B, E), and water clarity (C, F) on local age-0
(left column) and age-1+ (right column) yellow perch catch per unit effort (CPUE) from the southern Green Bay trawl survey, 1985–2009. See Figure 5 for
additional details.

high global CPUEs and retracting into shallow areas of south-
west Green Bay at low global CPUEs. Many marine (e.g.,
MacCall 1990; Swain and Sinclair 1994; Marshall and Frank
1995) and some freshwater fishes (e.g., Venne and Magnan
1995; Post et al. 1997) have been shown to exhibit density-

dependent habitat use, and interference or exploitative competi-
tion are typically inferred as the primary mechanisms explaining
patterns of distribution. At high CPUE, it is unknown whether
age-0 yellow perch in Green Bay can locally deplete their pri-
mary food resources of zooplankton or benthic invertebrates.
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Age-1+ yellow perch did not exhibit density-dependent habi-
tat use, however, suggesting competition for prey resources or
space is not as important for older age-classes of yellow perch as
it is for age-0 individuals. These results are broadly consistent
with previous studies that suggest density-dependence is more
likely in early life history stages (Houde 1987; Leggett and De-
blois 1994). Further research into the causes and consequences
of yellow perch density-dependent habitat use in Green Bay and
elsewhere throughout their range is warranted.

Cormorants have been implicated in the decline of yellow
perch in many places (Burnett et al. 2002; VanDeValk et al.
2002; Rudstam et al. 2004; Meadows 2006; Fielder 2008). Our
GAM models suggested that cormorant abundance was nega-
tively related to local age-0 and age-1+ yellow perch CPUE
in southern Green Bay, and declines were especially obvious
near cormorant nesting islands. Although not resident to south-
ern Green Bay before the early 1900s, cormorants increased
dramatically from 7 breeding birds in 1973 to over 30,000
breeding birds in 2009 (C. Lovell, personal communication),
concurrent with the collapse of yellow perch over the same time
frame (Paoli 2009). Using stomach content analysis, Meadows
(2006) determined that yellow perch was the most numerically
abundant prey item of southern Green Bay cormorants in 2004
(37.0% by number), and third most abundant in 2005 (9.9%
by number). Based on a consumption model, she concluded
that cormorants ate substantially more yellow perch in south-
ern Green Bay than the combined commercial and recreational
harvest from the same period (Meadows 2006). The weight of
modeling and diet evidence suggests that cormorant predation
negatively affects yellow perch abundance in southern Green
Bay.

There are some limitations to a GAM regression approach.
The flexibility of GAMs allows them to fit observed data very
well, but when sample sizes are small the models can overfit
data at the expense of generality (Wood 2006). The large num-
ber of samples taken and the high degree of consistency between
age-0 and age-1+ yellow perch GAM models suggests that the
patterns we observed were robust and not subject to overfitting.
Our GAM models also explained 63–65% of the variation in
yellow perch CPUE, which is quite high compared with similar
habitat models but still suggests that a substantial amount of un-
explained variation remains. Unfortunately, we lacked reliable
data on some potential predators (walleyes, American white
pelicans Pelecanus erythrorhynchos) and competitors (alewives
Alosa pseudoharengus, round gobies Neogobius melanostomus)
of yellow perch, so our models can be considered a baseline
to which additional predator or competitor variables could be
added in the future as more data become available.

We used 25 years of trawling data in a varying-coefficient
GAM to document the various ways that local yellow perch
CPUE and distribution was affected by predatory, water quality,
landscape, and density-dependent factors. Our results suggest
that future work on fish population dynamics should not only
consider variables that directly influence CPUE, but also on how

those variables influence the spatial distribution of fish species.
Improved understanding of the controls of both the spatial and
temporal dynamics of fish species will help us better explain the
underlying causes of fluctuations of fish populations.
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