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Abstract—Underwater video sam-
pling has become a common ap-
proach to index fish abundance and 
diversity, but little has been pub-
lished on determining how much 
video to read. We used video data 
collected over a period of 6 years in 
the Gulf of Mexico to examine how 
the number of video frames read af-
fects accuracy and precision of fish 
counts and estimates of species rich-
ness. To examine fish counts, we fo-
cused on case studies of red snapper 
(Lutjanus campechanus), vermilion 
snapper (Rhomboplites aurorubens), 
and scamp (Mycteroperca phenax). 
Using a bootstrap framework, we 
found that fish counts were unbi-
ased when at least 5 of 1201 video 
frames within a 20-min video were 
read. The relative patterns of coeffi-
cients of variation (CVs) were nearly 
identical among species and declined 
as an inverse power function. Initial 
decreases in CVs were rapid as the 
number of frames read increased 
from 1 to 50. However, subsequent 
declines were modest, decreasing 
only by ~50% when the number of 
frames read increased by 300%. Es-
timated species richness increased 
asymptotically as the number of 
frames read increased from 25 to 
200 frames, and reading 50 frames 
documented 86% of the species ob-
served across all 1201 frames. Last-
ly, we used a generalized additive 
model to show that the most likely 
species to be missed were fast-swim-
ming fishes that are solitary or form 
relatively small schools. Our results 
indicate that the most efficient use 
of resources (i.e., maximum informa-
tion gained at the lowest cost) would 
be to read ~50 frames from each 
video. 

Underwater video sampling has be-
come a ubiquitous approach around 
the world to index the abundance 
of marine fish and invertebrate spe-
cies and to quantify marine biodiver-
sity (see reviews by Somerton and 
Gledhill, 2005; Murphy and Jenkins, 
2010). Although numerous underwa-
ter video approaches and techniques 
have been used to index abundance, 
many researchers now employ some 
version of a stationary point-count 
method with baited remote underwa-
ter video stations (BRUVS) (Willis et 
al., 2000; Cappo et al., 2004). BRU-
VS sampling has many advantages: 
1) it is nonextractive and, therefore, 
preferred in no-take areas, 2) is less 
size- or species-selective than other 
baited gears, 3) can sample deeper 
waters more easily than diver sur-
veys and do so at lower costs than 
can autonomous underwater vehi-
cles, 4) provides a permanent record 
available to be reviewed for accuracy 
by multiple readers, and 5) can cap-
ture habitat characteristics of a sur-
vey site and behavioral interactions 
among species (Silveira et al., 2003; 
Wells et al., 2008; Langlois et al., 
2010; Bacheler et al., 2013). 

Nearly all BRUVS studies now use 
an approach called MinCount (or MaxN 
or MaxNo) to index the number of indi-
viduals of various species present at a 
site (Ellis and DeMartini, 1995; Mur-

phy and Jenkins, 2010). MinCount is 
defined as the maximum number of 
individuals (of each species) present 
in a single frame during a viewing 
interval, and this approach is popu-
lar because it provides a conservative 
estimate of the number of individuals 
of each species present at a site (Ellis 
and DeMartini, 1995; Willis and Bab-
cock, 2000; Merritt et al, 2011). How-
ever, MinCount may be nonlinearly 
related to actual abundance because 
it measures a smaller and smaller 
proportion of individuals present at 
a site as abundance increases (Conn, 
2011; Schobernd et al., 2014). Instead, 
Conn (2011) proposed an alternative 
approach, MeanCount, which is calcu-
lated as the mean number of individu-
als observed in a series of frames over 
a viewing interval. Schobernd et al. 
(2014) found that MeanCount tracked 
true abundance linearly with levels of 
precision similar to that of MinCount. 
A linear relationship is highly desir-
able for developing indices of abun-
dance in stock assessment models 
(Kimura and Somerton, 2006).

A logical next step in the devel-
opment of the MeanCount approach 
for indexing fish abundance, as well 
as in estimating species richness, is 
to determine the optimal number 
of frames to be read over a given 
time interval. Previous studies have 
shown a strong relationship between 
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the time spent surveying and the number of taxa en-
countered for a wide variety of fish and wildlife species 
(Fuller and Langslow, 1984; St. John et al., 1990; Bark-
er et al., 1993; Gledhill, 2001), and new methods can 
account for detection probabilities of <1 when estimat-
ing species richness (Nichols et al., 1998; Johnson et 
al., 2013). Reading more frames will certainly provide 
more information but will also bring increased costs 
associated with the additional time and effort required 
(Rotherham et al., 2007; Al-Chokhachy et al., 2009). 

Our objective was to examine the tradeoff between 
minimizing the effort needed to read videos and maxi-
mizing the information obtained. We focused our analy-
ses on 2 primary response variables, each as a function 
of the number of video frames read. First, we exam-
ined potential bias and precision of MeanCount for 3 
economically important reef fish species in the Gulf of 
Mexico. Second, we examined estimates of species rich-
ness, defined here as the number of species observed in 
a video. The results provide general guidance regarding 
the amount of effort that should be expended to read 
underwater videos in diverse aquatic systems. 

Materials and methods

Data

We analyzed video data from a long-term reef fish 
monitoring program conducted within U.S. waters of 
the Gulf of Mexico. These data were collected by the 
Southeast Fisheries Science Center, National Marine 
Fisheries Service, in 2001–2002 and 2004–2007. A 
4-camera array was deployed with a soak time of 40 
min on hard-bottom habitats throughout the sampling 
range (Table 1) during the reef fish video survey of the 
Southeast Area Monitoring and Assessment Program. 
Four Sony DCR-VX20001 (Sony Corp., Tokyo) camcord-
ers were mounted orthogonally on a metal array, fac-

1 Mention of trade names or commercial companies is for iden-
tification purposes only and does not imply endorsement by 
the National Marine Fisheries Service, NOAA.

ing outward, at a height of 30 cm above the bottom 
(for more details, see Gledhill2). Each array was bait-
ed with approximately 0.5 kg of squid (Illex spp.) in 
a mesh bag and deployed during daylight hours only. 
These particular years were selected because they were 
the most recent years for which data were available 
before a significant methodological change occurred in 
video reading procedures.

The reef fish video survey was developed to index 
reef fish populations and was typically conducted in 
the spring and summer on shelf-edge reefs from south 
Texas to the Dry Tortugas in Florida (Fig. 1). A 2-stage 
sampling design was used to minimize travel time be-
tween stations because the survey area was large. For 
the first stage, we used a stratified random sampling 
design of randomly selected blocks, each of which was 
10′ of latitude by 10′ of longitude in size. Blocks were 
stratified by 4 geographic regions and by the amount 
of reef habitat (low or high) present in each block; each 
block was subdivided into a grid of cells that were 0.19 
km by 0.19 km. For the second stage of sampling, cells 
were randomly selected from within each block. The 
number of grid cells available for random selection 
varied depending on how much known reef area was 
contained in the sampled block. 

From each 40-min deployment, 1 of 4 videos was 
randomly selected, and 20 min of that video was ana-
lyzed beginning at the point when video visibility was 
sufficiently clear for identification of taxa. Fish shape, 
anatomical features, coloration, and swimming behav-
iors were used to identify individuals to genus and spe-
cies levels by using field guides (e.g., Hoese and Moore, 
1998; McEachran and Fechhelm, 1998; Carpenter, 2002; 
Humann and Deloach, 2002; McEachran and Fechhelm, 
2005). Video frames were examined every second dur-

2 Gledhill, C. T., G. W. Ingram Jr., K. R. Rademacher, P. Felts, 
B. Trigg, and L. Lombardi-Carlson. 2006. SEAMAP reef 
fish survey of offshore banks: yearly indices of abundance 
of red grouper (Epinephelus morio). SEDAR 12-DW-6, 12 
p. [Available from http://www.sefsc.noaa.gov/sedar/down-
load/S12%20DW06%20Video-survey.pdf?id=DOCUMENT, ac-
cessed 31 March 2014.]

Table 1

Number of video samples (N) included in the analyses of reef fishes in the northern Gulf 
of Mexico, as well as the range of dates, latitudes, and longitudes covered by the samples 
in 2001–2002 and 2004–2007. 

Year N Date range Latitude range (°N) Longitude range (°W)

2001 42 6/14–6/22 27.79–28.35 91.03–93.82
2002 260 2/22–5/30 24.50–30.00 84.26–96.78
2004 169 4/8–6/22 24.59–30.13 82.97–96.30
2005 350 4/20–7/29 24.51–30.13 82.77–96.53
2006 333 4/16–8/4 24.53–30.14 82.77–96.78
2007 389 4/22–8/13 24.50–30.13 82.77–96.77

http://www.sefsc.noaa.gov/sedar/download/S12%20DW06%20Video-survey.pdf?id=DOCUMENT
http://www.sefsc.noaa.gov/sedar/download/S12%20DW06%20Video-survey.pdf?id=DOCUMENT
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ing the interval from t=0 to t=20 min, resulting in anal-
ysis of 1201 frames. Species were recorded if they were 
listed in the fishery management plans of the Gulf of 
Mexico or South Atlantic Fishery Management Council 
or if commercial or recreational landings were known 
to exist. The resulting list of observed taxa included 
210 species (a group, hereafter, called priority species). 
The time each individual fish swam into and out of 
view (i.e., time in–time out) was recorded for each pri-
ority species. Our analysis included only those video 
samples in which at least one priority species was seen 
at some point during the 20 min. On the basis of these 
criteria, 1543 videos were included in our analyses.

MeanCount bias and precision

For a single video v, the MeanCount of a species across 
video frames was defined with the following equation:

 MeanCountv,F =
nff =1

F∑( )
F

,  (1)

where n  = the number of individuals observed in frame 
f; and 

 F = the total number of frames read. 

To examine how MeanCount relates to the number of 
frames read, we chose as case studies 3 ecologically and 
commercially important focal species: red snapper (Lut-
janus campechanus), vermilion snapper (Rhomboplites 

aurorubens), and scamp (Mycteroperca phenax). These 
species were chosen because they vary substantially in 
terms of body size and schooling behavior. Scamp are 
generally solitary, red snapper often form small groups, 
and vermilion snapper often form large groups. Vermil-
ion snapper are also much smaller than red snapper 
or scamp. Misidentification of these species is very un-
likely because of their distinct body shapes and swim-
ming behaviors. Of the 1543 videos examined in our 
study, red snapper were observed in 375 videos, ver-
milion snapper in 217, and scamp in 466. MeanCount 
was computed only from those videos in which the focal 
species was observed.

For each species, the true MeanCount for each video 
(MeanCountv,true) was computed from the full sampling 
universe of 1201 frames. That true value was then esti-
mated with a subset of frames with a possible sample 
size (F) from the interval [1, 200]. The sampling was 
conducted as follows. First, a list of frames (n=200) was 
drawn at random and without replacement from the 
full set of 1201 frames. Then, the first frame of the 
list (F=1) was used to compute MeanCountv,1. Next, the 
second frame (F=2) was included along with the first 
to compute MeanCountv,2, and so forth until all 200 
frames (F=200) were used to compute MeanCountv,200.

We quantified bias and precision in estimates of 
MeanCount with a bootstrap procedure. In the boot-
strap, the previously described sampling approach 
was repeated 1000 times. That is, for each bootstrap 
iteration b, a new set of 200 frames was drawn to com-

Figure 1
Sampling locations (o) where video was collected during the National Marine Fisheries Service’s reef 
fish video survey in the Gulf of Mexico in 2001–2002 and 2004–2007 as part of its Southeast Area 
Monitoring and Assessment Program. The light gray bathymetric contour lines indicate depths of 50 
and 100 m, respectively. Note that symbols overlap in many cases.
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pute MeanCount for every value of F=[1, 2, …, 200] 
frames. Therefore, we computed 1000 values for every 
MeanCountv,F, a choice that expanded our previous 
nomenclature to MeanCountb,v,F, where b represents 
a single bootstrap replicate, v represents a particular 
video sampling event, and F represents the number of 
frames read.

For each species, we quantified error in estimation 
using mean relative error (MRE). On the basis of 1000 
bootstrap replicates, we computed the MRE for each 
video in which a species was observed and for each 
number of frames read with the following equation: 

MREv,F =

MeanCountb,v,F −MeanCountv,true

MeanCountv,true

⎛

⎝
⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟B=1
1000∑

1000
.
  

(2)

In addition to their use in determining MRE, we used 
the bootstrap replicates to compute the coefficient of 
variation (CV) for each video and for each number of 
frames read, CVv,F. For graphical presentation, these 
CVs were scaled to their minima (which occurred at 
the largest sample size, F=200) to demonstrate the pro-
portional decline in variability in estimates as sample 
size increased. To quantify the expected response, mean 
CVs across videos ( CVF) were related to the number of 
frames through the use of a power function, CV F=aFb, 
where a and b are parameters. These parameters were 
estimated in log–log space through linear regression, 
with the following equation:

 log(CV F ) = ′a +b log(F),  (3)

where ′a = log(a).

Then, the power function could be inverted to provide 
the number of frames necessary to achieve a desired 
mean CV:

 F = CV F /ab .  (4)

Species richness

The procedure for estimating species richness for pri-
ority species was similar to the one for estimating 
MeanCount. However, when estimating species rich-
ness, we used all 1543 videos. We first computed the 
true species richness observed in each video (Rv,true) 
as the total number of priority species observed across 
all 1201 frames. Note that Rv,true is not necessarily the 
true species richness at a particular site but rather 
is the species richness observed in an entire 20-min 
video. That true value was then estimated by tabulat-
ing the species richness observed during each incre-
ment of the number of frames read, F=[1, 2, …, 200]. 
As before, uncertainty in the estimation was quantified 
with a bootstrap procedure with 1000 replicates, where 
each replicate (b) contained a set of 200 frames drawn 
at random and without replacement from the original 
1201 frames. Therefore, for each video, we generated 

1000 estimates of species richness for each number of 
frames read, Rb,v,F. 

Once computed, the estimates of species richness 
were used to evaluate how increasing the number of 
frames read (F) affected the detection of species known 
to be present in a video. For this evaluation, we used 
the average number of species detected across boot-
strap replicates, scaled to the true value, with the fol-
lowing equation:

 
Pv,F =

Rb,v,Fb=1
1000∑( ) 1000

Rv,true
.
 

(5)

Therefore, Pv,F is a proportion equal to zero if no spe-
cies known to be present were detected on average or 
equal to one if all possible species were detected on 
average.

To better understand the estimates of species rich-
ness, we related the probability of being observed to 
behavioral characteristics of those species in videos. 
Specifically, we considered 2 characteristics of each 
priority species (s): 1) the mean number of individuals 
(Ns) seen in a video and 2) the mean duration (Ds; in 
seconds) each individual was observed in the videos. 
These mean values for each species were taken across 
videos in which a particular species was present. To re-
move rare species for which mean characteristics may 
be poorly estimated, species were included in this anal-
ysis only if observed in at least 10 videos. We then used 
a generalized additive model (GAM) to relate Ns and 
Ds, and their interaction, to the proportion of bootstrap 
replicates (Ys) in which species s was observed, from all 
videos where the species was present and where the 
number of frames read was F=25. We used 25 frames 
in this study to provide a meaningful contrast across 
families in the probability of being observed; making 
such distinctions is important for detecting the ef-
fects of predictor variables. All priority species were 
included in this analysis. Before fitting the GAM, the 
response variable Ys was transformed from probability 
space by using the arcsin squareroot transformation to 
achieve approximate normality, and predictor variables 
were taken in log space:

 

arcsin Ys( )=
g1(log(Ns)) + g2(log(Ds))+ g3(log(Ns), (log(Ds)),  

(6)

where g1, g2, and g3 represent spline functions. 

The GAM approach strikes a balance between more 
simple and more complicated models, and it was chosen 
for its flexibility and for providing a straightforward 
interpretation of results. The GAM was implemented 
in the R programming language, vers. 2.15.1 (R Core 
Team, 2012) with the mgcv library (Wood, 2006). For 
presentation, the fitted response was transformed 
back into probability space by squaring the sine of the 
response. 

Lastly, we summarized the mean duration in a 20-m 
video segment, mean number of individuals in each vid-
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eo segment, and probability of being observed in each 
video for each of the families of fishes included in the 
analysis described previously in this section (Table 2). 
The purpose of including this table is to inform read-
ers working in tropical and subtropical oceans about 
those groups of species they are likely to see and those 
groups that they are likely to miss if adopting a Mean-
Count approach where a subset of frames is read. 

Results

MeanCount bias and precision

The MeanCount estimator behaved similarly for the 
3 species that we used as case studies. The central 
tendency across bootstrap replicates, represented by 
mean MeanCount, converged rapidly for red snapper, 
vermilion snapper, and scamp as the number of frames 
read increased (Fig. 2). MeanCount values for scamp 
and red snapper were less variable than the results for 
vermilion snapper (on the basis of 5th and 95th percen-

tiles), and variability for all 3 species decreased when 
more frames were read (Fig. 2). 

Across all sampling events (i.e., all 20-min videos 
analyzed) in which the focal species was observed, 
there were no obvious biases in MeanCount for red 
snapper, vermilion snapper, or scamp at any level of 
sampling intensity for 25 to 200 frames read (Fig. 3). 
The variance for each species decreased as the number 
of frames read increased, a finding consistent with the 
results of the individually selected video analysis pre-
viously described (Fig. 3). Furthermore, the variance 
surrounding MeanCount was approximately 50% lower 
for scamp than for either red snapper or vermilion 
snapper (Fig. 3). 

The relative patterns of MeanCount CVs were near-
ly identical among the 3 species (Fig. 3). As the num-
ber of frames increased from 1 to 200, the decrease 
in CV was initially rapid and then more gradual as 
more frames were read (Fig. 3). Because of this pat-
tern, the largest reduction in CVs for all 3 species oc-
curred as the number of frames read increased from 1 
to 50. When frames read increased from 50 to 200 (i.e., 

Table 2

Mean duration and standard error of the mean (SE), measured in seconds (s), of individual fishes in video, mean number of 
individuals in videos, and mean probability that a fish species would be seen in a video segment (for those videos in which 
that species occurred) summarized by family for only those species seen in at least 10 videos from footage collected during 
the National Marine Fisheries Service’s reef fish video survey conducted in the Gulf of Mexico in 2001–2002 and 2004–2007 
as part of its Southeast Area Monitoring and Assessment Program. Mean probability of being seen in a video was calculated 
for each species as the mean proportion of videos in which a species was observed (on the basis of 25 randomly selected 
frames) over all videos in which that species was present. Note that the family names for Labridae, Serranidae, and Scaridae 
follow the Integrated Taxonomic Information System (http://www.itis.gov). Standard errors of the means (SE) are provided 
in parentheses.

  Number of Mean duration Mean number Probability of being 
Family Common name species  (s)  of individuals  seen in video 

Opistognathidae jawfishes 1 504 22 1.00 
Priacanthidae bigeyes 2 921 (SE 127) 3 (SE 1) 0.99 (SE 0.01)
Holocentridae squirrelfishes 1 132 10 0.96
Pomacanthidae angelfishes 5 44 (SE7) 16 (SE 9) 0.85 (SE 0.03)
Balistidae triggerfishes 3 66 (SE 40) 11 (SE 4) 0.84 (SE 0.07)
Pomacentridae damselfishes 5 35 (SE 6) 23 (SE 7) 0.84 (SE 0.04)
Labridae wrasses 7 15 (SE 2) 31 (SE 8) 0.80 (SE 0.06)
Serranidae sea basses and groupers 23 30 (SE 2) 12 (SE 2) 0.78 (SE 0.02)
Chaetodontidae butterflyfishes 3 31 (SE 3) 11 (SE 2) 0.77 (SE 0.03)
Malacanthidae tilefishes 2 28 (SE 11) 8 (SE 0) 0.76 (SE 0.05)
Sparidae porgies 6 14 (SE 2) 22 (SE 10) 0.75 (SE 0.03)
Acanthuridae surgeonfishes 3 26 (SE 6) 6 (SE 1) 0.73 (SE 0.02)
Haemulidae grunts 4 25 (SE 8) 22 (SE 6) 0.73 (SE 0.05)
Lutjanidae snappers 7 12 (SE 1) 37 (SE 9) 0.73 (SE 0.04)
Scaridae parrotfishes 4 23 (SE 2) 13 (SE 5) 0.71 (SE 0.05)
Tetraodontidae puffers 2 25 (SE 7) 4 (SE 1) 0.64 (SE 0.13)
Mullidae goatfishes 2 11 (SE 4) 14 (SE 6) 0.60 (SE 0.00)
Muraenidae morays 2 40 (SE 4) 4 (SE 2) 0.60 (SE 0.07)
Carangidae jacks 6 6 (SE 1) 14 (SE 2) 0.40 (SE 0.04)
Sphyraenidae barracudas 1 18 4 0.34 
Scombridae mackerels 1 5 2 0.17

http://www.itis.gov
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300% increase in frames read), CVs only declined 
by approximately 50% for all 3 species. 

In all cases, the relationship between mean 
CVs and number of frames read was described 
well by power functions (coefficient of determina-
tion [r2]>0.99; P<0.0001 for F-statistics). Among 
the 3 species, the estimated relationships show 
differences in scale (a) but similar rates of de-
cline (b). The mean estimates of parameters and 
standard errors of the mean (SE) were a=1.324 
(SE 0.004) and b=–0.525 (SE 0.001) for red snap-
per, a=1.585 (SE 0.004) and b=–0.524 (SE 0.001) 
for vermilion snapper, and a=0.981 (SE 0.004) 
and b=–0.525 (SE 0.001) for scamp. Because the 
rates of decline were similar across species, the 
same number of frames could be read for each if 
the goal is to achieve a proportional reduction in 
CV from each species’ maximum (which occurred 
at F=1). However, if the goal is to achieve a par-
ticular CV, then each species would require a dif-
ferent number of frames read. For example, a CV 
of 0.4 would require F=71 for red snapper, F=119 
for vermilion snapper, and F=37 for scamp.

Species richness

For illustration, we chose 3 example videos with 
varying levels of species richness to show general 
patterns in estimates of species richness. In these 
example videos, the estimated species richness 
(number of species observed) increased asymptoti-
cally as more frames were read (Fig. 4). Although 
these 3 videos were chosen simply as examples, 
they show that the estimates of species richness 
increased stepwise as the number of frames read 
was incremented. That is, with the inclusion of 
each additional frame read, the species count ei-
ther remained the same if that frame contained 
no new species or it increased by the number of 
new species observed. In these examples, the me-
dian estimate captured 100% of the species pres-
ent by around 50 frames for the videos with 3 or 7 
species observed but not until around 100 frames 
for the video that contained 17 species (Fig. 4). 

Across all 1543 videos, the proportion of spe-
cies observed increased with sampling intensity. 
Most species (median proportion=0.75) were ob-
served in each video when only 25 of the 1201 
frames were read, and the median proportion in-
creased when 50 frames (0.86), 100 frames (0.95), 
or 200 frames (0.99) were read (Fig. 5). On the ba-
sis of the interquartile range, however, there was 
substantial variability among videos, particularly 
when fewer than 100 frames were read (Fig. 5). 
When 100 or more frames were read, the vari-
ability was lower but some rare species in some 
videos were still missed. 

The GAM explained 87.2% of the deviation in 
the probability that a species would be observed 

Figure 2
MeanCount, which is calculated as the mean number of in-
dividual fish observed in a series of frames over a viewing 
interval, of a single sampling event (i.e., a 20-min video seg-
ment) in the northern Gulf of Mexico as a function of the 
number of video frames that were read for (A) red snapper 
(Lutjanus campechanus), (B) vermilion snapper (Rhombop-
lites aurorubens), and (C) scamp (Mycteroperca phenax). In 
each panel, the heavy solid line represents the mean of 1000 
bootstrap replicates, the lower dotted line represents the 5th 
percentile, the upper dotted line represents the 95th percen-
tile, the thin solid line is a single bootstrap iteration, and 
the filled circle on the right is the true MeanCount across all 
1201 frames that were analyzed for this study.

A

B

C
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in 25 frames on the basis of the mean duration of 
each species in a video (estimated degrees of freedom 
[edf]=1.5; F=36.6; P<0.0001), mean number of indi-
viduals in a video (edf=1.0; F=43.9; P<0.0001), or their 
interaction (edf=7.8; F=0.7; P=0.004). Species were ob-
served with higher probability as their mean time in 
the videos increased; however, this probability saturat-
ed near 1.0 for mean times of 100 s or more (Fig. 6A). 
Similarly, the probability of being observed increased 
as the mean number of individuals increased, but, the 
trend was nearly linear over the range of the predictor 
(Fig. 6B). The families of fishes that were most likely 
to be observed in 25 frames of video were the generally 
sedentary groups like jawfishes, bigeyes, squirrelfishes, 
angelfishes, and triggerfishes, and those families most 
likely to be missed were fast-moving groups like tunas 
and mackerels, barracudas, and jacks (Table 2). 

Discussion

In many places around the world, underwater video 
has become a common approach to monitor the abun-
dance and distribution of marine fish and invertebrate 
species and to quantify marine biodiversity (e.g., Heag-
ney et al., 2007; Stobart et al., 2007; Brooks et al., 
2011; Merritt et al., 2011; Gladstone et al., 2012). For 
many such studies, BRUVS have been used and have 
provided an index of the abundance of various species 
through the use of a stationary point-count with the 
MinCount method (Ellis and DeMartini, 1995; Willis 
et al., 2000; Murphy and Jenkins, 2010). Recent re-
search has indicated that MeanCount is more linearly 
related to true abundance than is MinCount (Conn, 
2011; Schobernd et al., 2014). To provide the next logi-
cal step in the evaluation of the MeanCount approach, 

Figure 3
Top row: mean relative error (MRE) of MeanCount, the mean number of individual fish observed in a series 
of frames over a viewing interval, across all videos analyzed in this study from the northern Gulf of Mexico 
in 2001–2002 and 2004–2007, as a function of the number of video frames read for (A) red snapper (Lutja-
nus campechanus), (B) vermilion snapper (Rhomboplites aurorubens), and (C) scamp (Mycteroperca phenax). 
Boxes represent the interquartile range, thick solid lines represent medians, and whiskers extend to the 
most extreme data point within 1.5 times the interquartile range from the box. Bottom row: coefficient of 
variation (CV) of MeanCount as a function of the number of video frames read for (D) red snapper (Lutjanus 
campechanus), (E) vermilion snapper (Rhomboplites aurorubens), and (F) scamp (Mycteroperca phenax). In 
each panel, curves represent CVs from each sampling event (i.e., each 20-min video collection), computed from 
1000 bootstrap replicates. Each CV curve is scaled to its minimum.
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we examined the tradeoff between time spent reading 
videos and the information obtained. In this study, we 
found that reading more frames decreased variability 
surrounding MeanCount for 3 reef fish species and in-

Figure 4
Examples of species richness (total number of species) 
observed as a function of the number of video frames 
that were read for this study of the use of video surveys 
to index abundance and diversity of reef fishes in the 
northern Gulf of Mexico in 2001–2002 and 2004–2007. 
Each panel is from a different 20-min video segment 
that was analyzed and selected to represent a relative-
ly (A) low, (B) medium, or (C) high number of species. 
In each panel, the solid line is the median value from 
bootstrap replicates, the lower dashed line is the lower 
5th percentile, the upper dashed line is the 95th percen-
tile, and the dotted horizontal line is the total number 
of species observed in the full video (across all 1201 
video frames).
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Figure 5
Proportion of species observed across all 20-min videos 
analyzed in this study as a function of the number of 
video frames that were read for this study of the use 
of video surveys to index abundance and diversity of 
reef fishes in the northern Gulf of Mexico in 2001–02 
and 2004–2007. A value from each 20-min video was 
computed as the mean estimate of species richness 
(i.e., mean of the number of species observed across 
1000 bootstrap replicates) divided by the total number 
of species known to be present in that video segment 
(i.e., observed in any of the 1201 video frames). Boxes 
represent the interquartile range, thick heavy lines 
represent medians, and whiskers extend to the most 
extreme data point within 1.5 times the interquartile 
range from the box.
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creased the total number of species observed, but bias 
was negligible even when a small number of frames 
were read (e.g., F=25). These results will be useful to 
researchers in designing and tailoring their underwa-
ter video surveys to incorporate MeanCount for estima-
tion of relative abundance or species richness. 

Previous studies have shown that the number of 
taxa encountered in a wide variety of fisheries and 
wildlife monitoring studies is related to the spatial 
or temporal extent of sampling (Fuller and Langslow, 
1984; St. John et al., 1990; Barker et al., 1993; Gled-
hill, 2001). We observed an inverse power relationship 
between CVs and number of frames read and an as-
ymptotic relationship between the number of species 
observed and the number of frames read. Therefore, 
CVs decreased and the number of species observed in-
creased dramatically as the number of frames read in-
creased from 1 to 50, but gains in precision were much 
more modest after that point. These results are simi-
lar to results from studies of stream fishes that have 
documented a threshold of sites sampled beyond which 
the increase in species observed was negligible (Anger-
meier and Smogor, 1995; Cao et al., 2001; de Freitas 
Terra et al., 2013). The number of frames that should 
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Figure 6
Relationship between the probability of a species being 
observed in a video segment and (A) its mean time in 
video or (B) the mean number of individuals of that 
species observed in each video. Included in the analysis 
were 90 reef fish species present in at least 10 videos 
in the National Marine Fisheries Service’s reef fish 
video survey conducted in the northern Gulf of Mexico 
in 2001–2002 and 2004–2007 as part of its Southeast 
Area Monitoring and Assessment Program. The solid 
black lines indicate fitted relationships from a gener-
alized additive model, the dashed lines are 95% confi-
dence intervals, and the tick marks on the x-axis show 
the distribution of values from the 90 species that were 
included in this analysis. 
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be read is likely study-specific and would depend on 
the total number of videos to be read, the relative im-
portance of rare species, the total resources available 
for video reading, and time constraints for video read-

ing (Gledhill, 2001). Our results indicate that reading 
approximately 50 frames from each video may provide 
a reasonable compromise between costs and informa-
tion gained, if one can accept that about 14% of species 
would be missed at each site compared with a reading 
of all frames in an entire 20-min video segment. 

As shown by our GAM results, behavioral character-
istics largely determined how likely a species was to be 
observed or missed in a subset of video frames. Wheth-
er a species is observed in a subset of video frames is 
almost entirely dependent on 2 behavioral character-
istics: 1) the mean duration of time spent by each fish 
in the video viewing area and 2) the mean number of 
individuals present in each video. Fast-swimming and 
relatively infrequent fishes, such as tunas, mackerels, 
barracudas, and jacks, were the ones most likely to be 
missed and, therefore, tended to be underrepresented 
in estimates of species richness. These same taxa also 
had higher absolute CVs around indices of abundance 
than those for fishes like groupers and snappers that 
were observed more frequently. We also showed that 
CVs from observations of a fast-moving, schooling 
species (vermilion snapper) were more than twice as 
high as CVs for a slow-moving, nonschooling species 
(scamp), but the relative pattern of CVs was the same 
for both species. Clearly, researchers must carefully 
consider the behavior of their target species when de-
signing a BRUVS sampling strategy with a MeanCount 
approach, for instance, by allocating significantly more 
video-reading effort if fast-moving, infrequently en-
countered species are targeted. 

We estimated the proportion of species observed in 
a subset of frames compared with the number observed 
in all frames of a 20-min video segment, but note that 
reading all frames in a 20-min video segment likely 
underestimates all the species present at a site. For 
instance, Gledhill (2001) showed that approximately 
68% of reef fish taxa in the Gulf of Mexico that were 
observed in a continuous 60-min video segment were 
observed in analysis of a 20-min segment. Further-
more, given the exclusively diurnal sampling in our 
study, nocturnal fishes were likely poorly detected, as 
were small, cryptic species (Collette et al., 2003; Smith-
Vaniz et al., 2006; Williams et al., 2006). Therefore, our 
results (from an approach for which a subset of frames 
was read) should be interpreted as a reduction in spe-
cies observed compared with results from reading of a 
20-min video segment, not a comparison with the true 
species richness at a site. 

Researchers could consider approaches that account 
for the fact that all video reading methods likely miss 
some reef fish species that are actually present at a 
site. First, occupancy or N-mixture modeling approach-
es can estimate detection or capture probabilities sepa-
rately from the underlying distribution or abundance 
of a species (MacKenzie et al., 2002; Royle, 2004), but 
multiple site visits may be necessary each year (Issaris 
et al., 2012) unless spatial autocorrelation is modeled 
(Johnson et al., 2013). Second, if the emphasis is on es-
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timation of species richness over an entire study area, 
species accumulation (i.e., rarefaction) curves may be a 
useful approach (e.g., Nichols et al., 1998; Thompson et 
al., 2003). Species accumulation curves and related ap-
proaches (Angermeier and Smogor, 1995) may be espe-
cially useful in diverse systems with many rare species 
(Green and Young, 1993; Gotelli and Colwell, 2001). 

Our study design included several simplifications. 
First, with our bootstrap procedure frames were se-
lected at random for analysis. Alternative approaches 
may select frames systematically, either with fixed 
intervals (e.g., one frame every 30 s; Bacheler et al., 
2013) or through adaptive sampling. Second, we esti-
mated the proportion of species observed in a subset of 
frames in relation to all of the species observed in each 
20-min video segment. Ideally, our estimates would 
have been compared with the total number of species 
occupying the site, but true species richness at each 
site was unknown (Gotelli and Colwell, 2001). Third, 
we lacked information on current direction or magni-
tude; therefore, we were unable to estimate the size or 
shape of the bait plume, information that can be impor-
tant in determining the catch or counts of fishes made 
through the use of baited gears (Collins et al., 2002; 
Jamieson et al., 2006). Fourth, we did not account for 
temporal autocorrelation (i.e., samples taken closer in 
time are likely more similar than those taken further 
apart; Strachan and Harvey, 1996) when analyzing 
frames within a particular video. Temporal autocorre-
lation violates the standard statistical assumption of 
independence among observations and, when present, 
may affect the estimated CVs. Temporal correlation 
is problematic for characterization of diel or seasonal 
variability but not for quantification of the density or 
number of species captured in a video. Temporal cor-
relation could be minimized or avoided in practice by 
not choosing frames clustered in time. Fifth, our study 
would have been more informative if the costs of read-
ing video frames were known, allowing for explicit 
cost-benefit analyses related to optimum sample sizes 
(Cochran, 1977; Thompson, 1992). However, these video 
data were recorded in a time in–time out format and 
not by individual frames, and, therefore, the costs of 
reading each frame could not be estimated. 

MeanCount, computed from a sequence of video 
frames, has been shown to track linearly with true 
abundance at a site (Conn, 2011; Schobernd et al., 
2014)—a critically important issue when standard-
izing survey data to produce abundance indices for 
use in stock assessment models (Maunder and Punt, 
2004). Our study is the first, however, to document how 
the number of frames read can relate to CVs around 
MeanCount for reef fish species and the proportion of 
reef fish species observed at a site. Previous research 
has documented the general relationship between the 
spatial or temporal extent of sampling and CVs or 
the number of species observed (Fuller and Langslow, 
1984; St. John et al., 1990; Barker et al., 1993; Gledhill, 
2001). Similarly, we showed that the number of frames 

read was negatively related to CVs and positively re-
lated to the proportion of species observed. More impor-
tant, however, both relationships were nonlinear and 
indicate that the information gain slowed substantially 
after reading approximately 50 frames. Video studies 
that apply the MeanCount approach to other systems 
could use our GAM results to help broadly understand 
how many frames to read, accounting for the behaviors 
of the species of interest. 
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